日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=ex(sinx+cosx)+a,g(x)=(a2﹣a+10)ex(a為常數(shù)).
          (1)已知a=0,求曲線y=f(x)在(0,f(0))處的切線方程;
          (2)當0≤x≤π時,求f(x)的值域;
          (3)若存在x1、x2∈[0,π],使得|f(x1)﹣g(x2)|<13﹣e 成立,求實數(shù)a的取值范圍.

          【答案】
          (1)解:a=0時,f(x)=ex(sinx+cosx),

          f′(x)=ex(sinx+cosx)+ex(cosx﹣sinx)=2excosx,

          ∴f′(0)=2,f(0)=1,

          ∴切線方程為:y﹣1=2(x﹣0),即2x﹣y﹣1=0為所求的切線方程


          (2)解:由f′(x)=2excosx≥0,得0≤x≤ ,f′(x)=2excosx≤0,得 ≤x≤π.

          ∴y=f(x)在[0, ]上單調(diào)遞增,在[ ,π]上單調(diào)遞減.

          ∴ymax=f( )= +a.

          f(0)=1+a,f(π)=﹣eπ+a<f(0),ymin=f(π)=﹣eπ+a,

          ∴f(x)的值域為[﹣eπ+a, +a]


          (3)解:∵a2﹣a+10>0,∴g(x)在[0,π]上是增函數(shù),

          g(0)=a2﹣a+10,g(π)=(a2﹣a+10)eπ,

          ∴g(x)的值域為[a2﹣a+10,(a2﹣a+10)eπ].

          ∵a2﹣a+10﹣( +a)=(a﹣1)2+(9﹣ )>0,

          依題意,a2﹣a+10﹣( +a)<13﹣

          即a2﹣2a﹣3<0,解得:﹣1<a<3


          【解析】(1)求出原函數(shù)的導函數(shù),得到函數(shù)在x=0時的導數(shù),再求出f(0),然后利用直線方程的點斜式得答案;(2)由原函數(shù)的導函數(shù)的符號確定原函數(shù)的單調(diào)區(qū)間,從而求得原函數(shù)的極大值點,得到函數(shù)的最大值,再求出端點值得答案;(3)由a2﹣a+10>0,得g(x)在[0,π]上是增函數(shù),從而求得g(x)的值域.由題意得到a2﹣a+10﹣( +a)<13﹣ ,求解關于a的不等式得答案.
          【考點精析】通過靈活運用利用導數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導數(shù),掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值即可以解答此題.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】若x∈[1,+∞)時,關于x的不等式 ≤λ(x﹣1)恒成立,則實數(shù)λ的取值范圍為

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】五面體ABC﹣DEF中,面BCFE是梯形,BC∥EF,面ABED⊥面BCFE,且AB⊥BE,DE⊥BE,AG⊥DE于G,若BE=BC=CF=2,EF=ED=4.
          (1)求證:G是DE中點;
          (2)求二面角A﹣CE﹣F的平面角的余弦.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某工廠生產(chǎn)甲,乙兩種芯片,其質(zhì)量按測試指標劃分為:指標大于或等于82為合格品,小于82為次品.現(xiàn)隨機抽取這兩種芯片各100件進行檢測,檢測結(jié)果統(tǒng)計如表:

          測試指標

          [70,76)

          [76,82)

          [82,88)

          [88,94)

          [94,100]

          芯片甲

          8

          12

          40

          32

          8

          芯片乙

          7

          18

          40

          29

          6

          (Ⅰ)試分別估計芯片甲,芯片乙為合格品的概率;
          (Ⅱ)生產(chǎn)一件芯片甲,若是合格品可盈利40元,若是次品則虧損5元;生產(chǎn)一件芯片乙,若是合格品可盈利50元,若是次品則虧損10元.在(I)的前提下,
          (i)記X為生產(chǎn)1件芯片甲和1件芯片乙所得的總利潤,求隨機變量X的分布列和數(shù)學期望;
          (ii)求生產(chǎn)5件芯片乙所獲得的利潤不少于140元的概率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】下列四個函數(shù)中,以π為最小正周期,且在區(qū)間( ,π)上為減函數(shù)的是(
          A.y=cos2x
          B.y=2|sinx|
          C.
          D.y=﹣cotx

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】連續(xù)投擲兩次骰子得到的點數(shù)分別為m,n,向量 與向量 的夾角記為α,則α 的概率為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=|2x﹣a|+|x﹣1|.
          (1)當a=3時,求不等式f(x)≥2的解集;
          (2)若f(x)≥5﹣x對x∈R恒成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,△PAD為正三角形,四邊形ABCD為直角梯形,CD∥AB,BC⊥AB,平面PAD⊥平面ABCD,點E、F分別為AD、CP的中點,AD=AB=2CD=2.
          (Ⅰ)證明:直線EF∥平面PAB;
          (Ⅱ)求直線EF與平面PBC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】共享單車進駐城市,綠色出行引領時尚,某市有統(tǒng)計數(shù)據(jù)顯示,2016年該市共享單車用戶年齡等級分布如圖1所示,一周內(nèi)市民使用單車的頻率分布扇形圖如圖2所示,若將共享單車用戶按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,將一周內(nèi)使用的次數(shù)為6次或6次以上的稱為“經(jīng)常使用單車用戶”,使用次數(shù)為5次或不足5次的稱為“不常使用單車用戶”,已知在“經(jīng)常使用單車用戶”中有 是“年輕人”.
          (Ⅰ)現(xiàn)對該市市民進行“經(jīng)常使用共享單車與年齡關系”的調(diào)查,采用隨機抽樣的方法,抽取一個容量為200的樣本,請你根據(jù)圖表中的數(shù)據(jù),補全下列2×2列聯(lián)表,并根據(jù)列聯(lián)表的獨立性檢驗,判斷能有多大把握可以認為經(jīng)常使用共享單車與年齡有關?
          使用共享單車情況與年齡列聯(lián)表

          年輕人

          非年輕人

          合計

          經(jīng)常使用共享單車用戶

          120

          不常使用共享單車用戶

          80

          合計

          160

          40

          200

          (Ⅱ)將頻率視為概率,若從該市市民中隨機任取3人,設其中經(jīng)常使用共享單車的“非年輕人”人數(shù)為隨機變量X,求X的分布列與期望.
          (參考數(shù)據(jù):

          P(K2≥k0

          0.15

          0.10

          0.050

          0.025

          0.010

          k0

          2.072

          2.706

          3.841

          5.024

          6.635

          其中,K2= ,n=a+b+c+d)

          查看答案和解析>>

          同步練習冊答案