日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=(1+x)e2x , g(x)=ax+ +1+2xcosx,當(dāng)x∈[0,1]時(shí),
          (1)求證: ;
          (2)若f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

          【答案】
          (1)證明:①當(dāng)x∈[0,1)時(shí),(1+x)e2x≥1﹣x(1+x)ex≥(1﹣x)ex

          令h(x)=(1+x)ex﹣(1﹣x)ex,則h′(x)=x(ex﹣ex).

          當(dāng)x∈[0,1)時(shí),h′(x)≥0,

          ∴h(x)在[0,1)上是增函數(shù),

          ∴h(x)≥h(0)=0,即f(x)≥1﹣x.

          ②當(dāng)x∈[0,1)時(shí), ex≥1+x,令u(x)=ex﹣1﹣x,則u′(x)=ex﹣1.

          當(dāng)x∈[0,1)時(shí),u′(x)≥0,

          ∴u(x)在[0,1)單調(diào)遞增,∴u(x)≥u(0)=0,

          ∴f(x)

          綜上可知:


          (2)解:設(shè)G(x)=f(x)﹣g(x)=

          =

          令H(x)= ,則H′(x)=x﹣2sinx,

          令K(x)=x﹣2sinx,則K′(x)=1﹣2cosx.

          當(dāng)x∈[0,1)時(shí),K′(x)<0,

          可得H′(x)是[0,1)上的減函數(shù),∴H′(x)≤H′(0)=0,故H(x)在[0,1)單調(diào)遞減,

          ∴H(x)≤H(0)=2.∴a+1+H(x)≤a+3.

          ∴當(dāng)a≤﹣3時(shí),f(x)≥g(x)在[0,1)上恒成立.

          下面證明當(dāng)a>﹣3時(shí),f(x)≥g(x)在[0,1)上不恒成立.

          f(x)﹣g(x)≤ = =﹣x

          令v(x)= = ,則v′(x)=

          當(dāng)x∈[0,1)時(shí),v′(x)≤0,故v(x)在[0,1)上是減函數(shù),

          ∴v(x)∈(a+1+2cos1,a+3].

          當(dāng)a>﹣3時(shí),a+3>0.

          ∴存在x0∈(0,1),使得v(x0)>0,此時(shí),f(x0)<g(x0).

          即f(x)≥g(x)在[0,1)不恒成立.

          綜上實(shí)數(shù)a的取值范圍是(﹣∞,﹣3].


          【解析】(1)①當(dāng)x∈[0,1)時(shí),(1+x)e2x≥1﹣x(1+x)ex≥(1﹣x)ex , 令h(x)=(1+x)ex﹣(1﹣x)ex , 利用導(dǎo)數(shù)得到h(x)的單調(diào)性即可證明;②當(dāng)x∈[0,1)時(shí), ex≥1+x,令u(x)=ex﹣1﹣x,利用導(dǎo)數(shù)得出h(x)的單調(diào)性即可證明.(2)利用(I)的結(jié)論得到f(x)≥1﹣x,于是G(x)=f(x)﹣g(x)≥ = .再令H(x)= ,通過(guò)多次求導(dǎo)得出其單調(diào)性即可求出a的取值范圍.
          【考點(diǎn)精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)f(x)=alnxbx2(x>0),若函數(shù)f(x)在x=1處與直線y=-相切。

          (1)求實(shí)數(shù)a,b的值;

          (2)求函數(shù)f(x)在上的最大值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,,,,設(shè)的外接圓圓心為.

          (1)若與直線相切,求實(shí)數(shù)的值;

          (2)設(shè)點(diǎn)上,使的面積等于12的點(diǎn)有且只有三個(gè),試問(wèn)這樣的是否存在?若存在求出的標(biāo)準(zhǔn)方程;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知三棱錐P-ABC的三條側(cè)棱兩兩互相垂直,且AB=,BC=,AC=2,則此三棱錐外接球的表面積為______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列說(shuō)法正確的個(gè)數(shù)有( )

          ①用刻畫回歸效果當(dāng)越大時(shí),模型的擬合效果越差;反之,則越好;

          ②命題“,”的否定是“,”;

          ③若回歸直線的斜率估計(jì)值是,樣本點(diǎn)的中心為,則回歸直線方程是;

          ④綜合法證明數(shù)學(xué)問(wèn)題是“由因索果”,分析法證明數(shù)學(xué)問(wèn)題是“執(zhí)果索因”。

          A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(本小題滿分14分)已知過(guò)原點(diǎn)的動(dòng)直線與圓 相交于不同的兩點(diǎn),

          1)求圓的圓心坐標(biāo);

          2)求線段的中點(diǎn)的軌跡的方程;

          3)是否存在實(shí)數(shù),使得直線 與曲線只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正方體的底面與正四面體的底面在同一平面α上,且AB∥CD,正方體的六個(gè)面所在的平面與直線CE,EF相交的平面?zhèn)數(shù)分別記為m,n,那么m+n=(

          A.8
          B.9
          C.10
          D.11

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】小波以游戲方式?jīng)Q定是參加學(xué)校合唱團(tuán)還是參加學(xué)校排球隊(duì),游戲規(guī)則為:以0為起點(diǎn),再?gòu)腁1 , A2 , A3 , A4 , A5 , A6 , A7 , A8(如圖)這8個(gè)點(diǎn)中任取兩點(diǎn)分別為終點(diǎn)得到兩個(gè)向量,記這兩個(gè)向量的數(shù)量積為X.若X=0就參加學(xué)校合唱團(tuán),否則就參加學(xué)校排球隊(duì).

          (1)求小波參加學(xué)校合唱團(tuán)的概率;
          (2)求X的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直棱柱ABC﹣A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB= AB.

          (1)證明:BC1∥平面A1CD
          (2)求二面角D﹣A1C﹣E的正弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案