日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知正項(xiàng)數(shù)列{an},其前n項(xiàng)和Sn,滿足6Sn=
          a
          2
          n
          +3an+2,又a1,a2,a6是等比數(shù)列{bn}的前三項(xiàng).
          (1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
          (2)記Tn=a1bn+a2bn-1+…+anb1,n∈N+,證明3Tn+1=2bn+1-an+1(n∈N+).
          考點(diǎn):數(shù)列的求和,數(shù)列遞推式
          專題:等差數(shù)列與等比數(shù)列
          分析:(1)根據(jù)等比數(shù)列的通項(xiàng)公式,求出首項(xiàng)和公比,即可求出相應(yīng)的通項(xiàng)公式.
          (2)利用錯(cuò)位相減法求出Tn,即得到得到結(jié)論.
          解答: 解:(1)∵6Sn=
          a
          2
          n
          +3an+2,①
          ∴6a1=
          a
          2
          1
          +3a1+2,解得a1=1或a1=2.
          又6Sn-1=
          a
          2
          n-1
          +3an-1+2(n≥2),②
          由①-②,得6an=(
          a
          2
          n
          -
          a
          2
          n-1
          )+3(an-an-1),
          即(an+an-1)(an-an-1-3)=0.
          ∵an+an-1>0,∴an-an-1=3(n≥2).
          當(dāng)a1=2時(shí),a2=5,a6=17,此時(shí)a1,a2,a6不成等比數(shù)列,∴a1≠2;∴an=3n-2,bn=4n-1
          (2)由(1)得Tn=1×4n-1+4×4n-2+…+(3n-5)×41+(3n-2)×40,③
          ∴4Tn=1×4n+4×4n-1+7×4n-2+…+(3n-2)×41.④
          由④-③得3Tn=4n+3×(4n-1+4n-2+…+41)-(3n-2)=4n+
          12×(1-4n-1)
          1-4
          -(3n-2)
          =2×4n-(3n+1)-1=2bn+1-an+1-1,
          ∴3Tn+1=2bn+1-an+1,n∈N+
          點(diǎn)評(píng):本題主要考查數(shù)列通項(xiàng)公式和前n項(xiàng)和的計(jì)算,利用錯(cuò)位相減法是解決本題的關(guān)鍵,考查學(xué)生的計(jì)算能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2且傾斜角為60°的直線與雙曲線右支交于A,B兩點(diǎn),若△ABF1為等腰三角形,則該雙曲線的離心率為( 。
          A、
          -1+
          13
          2
          B、
          1+
          13
          2
          C、
          -1+
          13
          2
          1+
          13
          2
          D、其它

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的前n項(xiàng)和Sn=
          n2+n
          2
          ,等比數(shù)列{bn}滿足b1b2=2b3,且b1,b2+2,b3成等差數(shù)列.
          (Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
          (Ⅱ)設(shè)cn=
          an
          bn
          ,Tn為數(shù)列{cn}的前n項(xiàng)和,求Tn的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=nan-2n(n-1),a1=1,數(shù)列{bn}的前n項(xiàng)和為Tn,其中bn=
          1
          a nan+1
          ,(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an,
          (Ⅱ)若對于任意n∈N*,Tn≥m2-m-
          9
          5
          ,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在極坐標(biāo)系中,過點(diǎn)M(2,0)的直線l與極軸的夾角α=
          π
          3

          (Ⅰ)將l的極坐標(biāo)方程寫成ρ=f(θ)的形式
          (Ⅱ)在極坐標(biāo)系中,以極點(diǎn)為坐標(biāo)原點(diǎn),以極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系.若曲線C2
          x=3sinθ
          y=acosθ
          (θ為參數(shù),a∈R)與l有一個(gè)公共點(diǎn)在Y軸上,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          一盒中裝有大小質(zhì)地相同的小球,其中紅球4個(gè),白球、黑球各3個(gè),
          (Ⅰ)從中任取兩球,求取得的兩球顏色不同的概率;
          (Ⅱ)將紅球標(biāo)上0,1,2,3;白球、黑球分別標(biāo)上0,1,2;現(xiàn)從盒中任意取出兩個(gè)小球.記所取出的兩球標(biāo)號(hào)之積為ξ,求ξ的分布列與數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          圓心在原點(diǎn)上與直線x+y-2=0相切的圓的方程為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知{an}為單調(diào)遞增的等比數(shù)列,且a2+a5=18,a3•a4=32,{bn}是首項(xiàng)為2,公差為d的等差數(shù)列,其前n項(xiàng)和為Sn
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)當(dāng)且僅當(dāng)2≤n≤4,n∈N*,Sn≥4+d•log2an2成立,求d的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若x,y滿足約束條件
          2x-y≤1
          x+y≥2
          y-x≤2
          ,目標(biāo)函數(shù)z=kx+2y(k∈N*)僅在點(diǎn)(1,1)處取得最小值,則k的值為
           

          查看答案和解析>>

          同步練習(xí)冊答案