日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸,且f(x)在( , )單調(diào),則ω的最大值為

          【答案】9
          【解析】解:∵函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸,
          ∴ω(﹣ )+φ=nπ,n∈Z,且ω +φ=n′π+ ,n′∈Z,
          ∴相減可得ω =(n′﹣n)π+ =kπ+ ,k∈Z,即ω=2k+1,即ω為奇數(shù).
          ∵f(x)在( , )單調(diào),∴ω +φ≥2kπ﹣ ,且ω +φ≤2kπ+ ,k∈Z,
          即﹣ω ﹣φ≤﹣2kπ+ ①,且ω +φ≤2kπ+ ,k∈Z ②,
          把①②可得 ωπ≤π,∴ω≤12,故有奇數(shù)ω的最大值為11.
          當(dāng)ω=11時,﹣ +φ=kπ,k∈Z,∵|φ|≤ ,∴φ=﹣
          此時f(x)=sin(11x﹣ )在( , )上不單調(diào),不滿足題意.
          當(dāng)ω=9時,﹣ +φ=kπ,k∈Z,∵|φ|≤ ,∴φ= ,
          此時f(x)=sin(9x+ )在( , )上單調(diào)遞減,滿足題意;
          故ω的最大值為9,
          故答案為:9.
          先跟據(jù)正弦函數(shù)的零點以及它的圖象的對稱性,判斷ω為奇數(shù),由f(x)在( , )單調(diào),可得ω +φ≥2kπ﹣ ,且ω +φ≤2kπ+ ,k∈Z,由此求得ω的范圍,檢驗可得它的最大值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知F2、F1是雙曲線 =1(a>0,b>0)的上、下焦點,點F2關(guān)于漸近線的對稱點恰好落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線的離心率為(
          A.3
          B.
          C.2
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市政府為了節(jié)約生活用電,計劃在本市試行居民生活用電定額管理,即確定一戶居民月用電量標(biāo)準(zhǔn)a,用電量不超過a的部分按平價收費,超出a的部分按議價收費為此,政府調(diào)查了100戶居民的月平均用電量單位:度,以,,,,分組的頻率分布直方圖如圖所示.

          根據(jù)頻率分布直方圖的數(shù)據(jù),求直方圖中x的值并估計該市每戶居民月平均用電量的值;

          用頻率估計概率,利用的結(jié)果,假設(shè)該市每戶居民月平均用電量X服從正態(tài)分布

          估計該市居民月平均用電量介于度之間的概率;

          利用的結(jié)論,從該市所有居民中隨機(jī)抽取3戶,記月平均用電量介于度之間的戶數(shù)為,求的分布列及數(shù)學(xué)期望

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某租賃公司擁有汽車100.當(dāng)每輛車的月租金為3000元時,可全部租出.當(dāng)每輛車的月租金每增加元時,未租出的車將會增加一輛.租出的車每輛每月需要維護(hù)費元,未租出的車每輛每月需要維護(hù)費.

          1)當(dāng)每輛車的月租金定為元時,能租出多少輛車?

          2)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時全修好;單位對學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如表:

          損壞餐椅數(shù)

          未損壞餐椅數(shù)

          學(xué)習(xí)雷鋒精神前

          50

          150

          200

          學(xué)習(xí)雷鋒精神后

          30

          170

          200

          80

          320

          400

          求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?

          請說明是否有以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神

          有關(guān)?參考公式:,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)恒過定點

          (1)求實數(shù)

          (2)在(1)的條件下,將函數(shù)的圖象向下平移個單位,再向左平移個單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,求的解析式.

          (3)對于定義在上的函數(shù),若在其定義域內(nèi),不等式恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中為常數(shù).

          (1)求函數(shù)的單調(diào)區(qū)間;

          (2)若的一條切線,求的值;

          (3)已知,為整數(shù),若對任意,都有恒成立,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】高三某班有60名學(xué)生(其中女生有20名),三好學(xué)生占,而且三好學(xué)生中女生占一半,現(xiàn)在從該班任選一名學(xué)生參加座談會,則在已知沒有選上女生的條件下,選上的是三好學(xué)生的概率是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐P﹣ABCD中,設(shè)底面ABCD是邊長為1的正方形,PA⊥面ABCD.

          (1)求證:PC⊥BD;
          (2)過BD且與直線PC垂直的平面與PC交于點E,當(dāng)三棱錐E﹣BCD的體積最大時,求二面角E﹣BD﹣C的大。

          查看答案和解析>>

          同步練習(xí)冊答案