【題目】若數(shù)列滿足:存在正整數(shù)
,對任意的
,使得
成立,則稱
為
階穩(wěn)增數(shù)列.
(1)若由正整數(shù)構(gòu)成的數(shù)列為
階穩(wěn)增數(shù)列,且對任意
,數(shù)列
中恰有
個(gè)
,求
的值;
(2)設(shè)等比數(shù)列為
階穩(wěn)增數(shù)列且首項(xiàng)大于
,試求該數(shù)列公比
的取值范圍;
(3)在(1)的條件下,令數(shù)列(其中
,常數(shù)
為正實(shí)數(shù)),設(shè)
為數(shù)列
的前
項(xiàng)和.若已知數(shù)列
極限存在,試求實(shí)數(shù)
的取值范圍,并求出該極限值.
【答案】(1);(2)
;(3)
.
【解析】
(1)設(shè),由題意得出
,求出正整數(shù)
的值即可;
(2)根據(jù)定義可知等比數(shù)列中的奇數(shù)項(xiàng)構(gòu)成的等比數(shù)列為
階穩(wěn)增數(shù)列,偶數(shù)項(xiàng)構(gòu)成的等比數(shù)列也為
階穩(wěn)增數(shù)列,分
和
兩種情況討論,列出關(guān)于
的不等式,解出即可;
(3)求出,然后分
、
和
三種情況討論,求出
,結(jié)合數(shù)列
的極限存在,求出實(shí)數(shù)
的取值范圍.
(1)設(shè),由于數(shù)列
為
階穩(wěn)增數(shù)列,則
,
對任意,數(shù)列
中恰有
個(gè)
,
則數(shù)列中的項(xiàng)依次為:
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
,
設(shè)數(shù)列中值為
的最大項(xiàng)數(shù)為
,
則,
由題意可得,即
,
,解得
,
因此,;
(2)由于等比數(shù)列為
階穩(wěn)增數(shù)列,即對任意的
,
,且
.
所以,等比數(shù)列中的奇數(shù)項(xiàng)構(gòu)成的等比數(shù)列為
階穩(wěn)增數(shù)列,偶數(shù)項(xiàng)構(gòu)成的等比數(shù)列也為
階穩(wěn)增數(shù)列.
①當(dāng)時(shí),則等比數(shù)列
中每項(xiàng)都為正數(shù),由
可得
,整理得
,解得
;
②當(dāng)時(shí),
(i)若為正奇數(shù),可設(shè)
,則
,
由,得
,即
,整理得
,解得
;
(ii)若為正偶數(shù)時(shí),可設(shè)
,則
,
由,得
,即
,整理得
,解得
.
所以,當(dāng)時(shí),等比數(shù)列
為
階穩(wěn)增數(shù)列.
綜上所述,實(shí)數(shù)的取值范圍是
;
(3),由(1)知
,則
.
①當(dāng)時(shí),
,
,則
,
此時(shí),數(shù)列的極限不存在;
②當(dāng)時(shí),
,
,
上式下式得
,
所以,,則
.
(i)若時(shí),則
,此時(shí)數(shù)列
的極限不存在;
(ii)當(dāng)時(shí),
,
此時(shí),數(shù)列的極限存在.
綜上所述,實(shí)數(shù)的取值范圍是
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
極坐標(biāo)系與直角坐標(biāo)系有相同的長度單位,以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸.已知曲線
的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
,射線
與曲線
分別交異于極點(diǎn)
的四點(diǎn)
.
(1)若曲線關(guān)于曲線
對稱,求
的值,并把曲線
和
化成直角坐標(biāo)方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小組為了研究晝夜溫差對一種稻谷種子發(fā)芽情況的影響,他們分別記錄了4月1日至4月5日的每天星夜溫差與實(shí)驗(yàn)室每天每100顆種子的發(fā)芽數(shù),得到如下資料:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
溫差 | 9 | 10 | 11 | 8 | 12 |
發(fā)芽數(shù) | 38 | 30 | 24 | 41 | 17 |
利用散點(diǎn)圖,可知線性相關(guān)。
(1)求出關(guān)于
的線性回歸方程,若4月6日星夜溫差
,請根據(jù)你求得的線性同歸方程預(yù)測4月6日這一天實(shí)驗(yàn)室每100顆種子中發(fā)芽顆數(shù);
(2)若從4月1日 4月5日的五組實(shí)驗(yàn)數(shù)據(jù)中選取2組數(shù)據(jù),求這兩組恰好是不相鄰兩天數(shù)據(jù)的概率.
(公式:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,我國施行個(gè)人所得稅專項(xiàng)附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等六項(xiàng)專項(xiàng)附加扣除.某單位老、中、青員工分別有人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取
人調(diào)查專項(xiàng)附加扣除的享受情況.
(Ⅰ)應(yīng)從老、中、青員工中分別抽取多少人?
(Ⅱ)抽取的25人中,享受至少兩項(xiàng)專項(xiàng)附加扣除的員工有6人,分別記為.享受情況如右表,其中“
”表示享受,“×”表示不享受.現(xiàn)從這6人中隨機(jī)抽取2人接受采訪.
員工 項(xiàng)目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
繼續(xù)教育 | × | × | ○ | × | ○ | ○ |
大病醫(yī)療 | × | × | × | ○ | × | × |
住房貸款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
贍養(yǎng)老人 | ○ | ○ | × | × | × | ○ |
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)為事件“抽取的2人享受的專項(xiàng)附加扣除至少有一項(xiàng)相同”,求事件
發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
支付方式 | (0,1000] | (1000,2000] | 大于2000 |
僅使用A | 18人 | 9人 | 3人 |
僅使用B | 10人 | 14人 | 1人 |
(Ⅰ)從全校學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生上個(gè)月A,B兩種支付方式都使用的概率;
(Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機(jī)抽取1人,以X表示這2人中上個(gè)月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機(jī)抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認(rèn)為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形
為正方形,
平面
,
,
是
上一點(diǎn),且
.
(1)求證: 平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測,每一件一等品都能通過檢測,每一件二等品通過檢測的概率為.現(xiàn)有10件產(chǎn)品,其中6件是一等品,4件是二等品.
(Ⅰ) 隨機(jī)選取1件產(chǎn)品,求能夠通過檢測的概率;
(Ⅱ)隨機(jī)選取3件產(chǎn)品,其中一等品的件數(shù)記為,求
的分布列;
(Ⅲ)隨機(jī)選取3件產(chǎn)品,求這三件產(chǎn)品都不能通過檢測的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,AC與BD交于點(diǎn)O,PC⊥底面ABCD, 點(diǎn)E為側(cè)棱PB的中點(diǎn).
求證:(1) PD∥平面ACE;
(2) 平面PAC⊥平面PBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年的西部決賽勇士和火箭共進(jìn)行了七場比賽,經(jīng)歷了殘酷的“搶七”比賽,兩隊(duì)的當(dāng)家球星庫里和杜蘭特七場比賽的每場比賽的得分如下表:
第一場 | 第二場 | 第三場 | 第四場 | 第五場 | 第六場 | 第七場 | |
庫里 | 26 | 28 | 24 | 22 | 31 | 29 | 36 |
杜蘭特 | 26 | 29 | 33 | 26 | 40 | 29 | 27 |
(1)繪制兩人得分的莖葉圖;
(2)分析并比較兩位球星的七場比賽的平均得分及得分的穩(wěn)定程度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com