日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于D,DE⊥AC交AC延長(zhǎng)線于點(diǎn)E,OE交AD于點(diǎn)F.
          (Ⅰ)求證:DE是⊙O的切線;
          (Ⅱ)若,求的值.
          (2)在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建坐標(biāo)系,已知曲線
          C:ρsin2θ=2acosθ(a>0),已知過(guò)點(diǎn)P(-2,-4)的直線L的參數(shù)方程為:,直線L與曲線C分別交于M,N.
          (Ⅰ)寫出曲線C和直線L的普通方程;  
          (Ⅱ)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.

          【答案】分析:(1)(Ⅰ)連接OD,可得∠OAD=∠OAD=∠DAC,可得OD∥AE,再由AE⊥DE,OD⊥DE,證得DE是⊙O的切線.
          (Ⅱ)過(guò)D作DH⊥AB于H,求出cos∠DOH=cos∠CAN==.再由△ADE∽△ADB以及△AEF∽△ODF,可得=
          (2)(Ⅰ)把曲線C方程的兩邊同時(shí)乘以ρ 可得 ρ2sin2θ=2a•ρ•cosθ,再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式求出它的直角坐標(biāo)方程,由直線L的參數(shù)方程消去參數(shù)t,求出它的普通方程.
          (Ⅱ)把直線l的參數(shù)方程代入 y2=2ax,再利用根與系數(shù)的關(guān)系,求出t1+t2 和t1•t2 的值,代入|MN|2=|PM||PN|,求出a的值.
          解答:解:(1)(Ⅰ)證明:連接OD,可得∠OAD=∠OAD=∠DAC,∴OD∥AE.
          又 AE⊥DE,OD⊥DE,∴DE是⊙O的切線.-----(6分)
          (Ⅱ)過(guò)D作DH⊥AB于H,則有∠DOH=∠CAN,∴cos∠DOH=cos∠CAN==.------(6分)
          設(shè) OD=5x,則 AB=10x,OH=3x,DH=4x.
          ∴AH=8x,AD2=80x2,-----(8分)
          由△ADE∽△ADB可得  AD2=AE•AB=AE•10x,∴AE=8x.
          又△AEF∽△ODF,=.------(12分)
          (2)解:(Ⅰ)已知曲線C:ρsin2θ=2acosθ(a>0),即ρ2sin2θ=2a•ρ•cosθ,即 y2=2ax.
          直線L的參數(shù)方程 ,兩式相減可得 y=x-2.-------(6分)
          (Ⅱ)直線l的參數(shù)方程為 (t為參數(shù)),
          代入 y2=2ax得到 ,
          則有 t1+t2=2(4+a),t1•t2=8(4+a),-----------(8分)
          因?yàn)閨MN|2=|PM||PN|,所以=-4 t1•t2=t1•t2,
          解得 a=1.-----------(12分)
          點(diǎn)評(píng):本題主要考查把參數(shù)方程化為普通方程的方法,等比數(shù)列的定義和性質(zhì),圓的切線判定定理的應(yīng)用,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          選作題,本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
          A.(幾何證明選講)
          如圖,AB是半圓的直徑,C是AB延長(zhǎng)線上一點(diǎn),CD切半圓于點(diǎn)D,CD=2,DE⊥AB,垂足為E,且E是OB的中點(diǎn),求BC的長(zhǎng).
          B.(矩陣與變換)
          已知矩陣
          12
          2a
          的屬于特征值b的一個(gè)特征向量為
          1
          1
          ,求實(shí)數(shù)a、b的值.
          C.(極坐標(biāo)與參數(shù)方程)
          在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(1,-2)在曲線
          x=2pt2
          y=2pt
          (t為參數(shù),p為正常數(shù)),求p的值.
          D.(不等式選講)
          設(shè)a1,a2,a3均為正數(shù),且a1+a2+a3=1,求證:
          1
          a1
          +
          1
          a2
          +
          1
          a3
          ≥9

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•鹽城二模)(選修4-1:幾何證明選講)
          如圖,AB是⊙O的直徑,C、E為⊙O上的點(diǎn),且CA平分∠BAE,DC是⊙O的切線,交AE的延長(zhǎng)線于點(diǎn)D.求證:CD⊥AE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (1)如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于D,DE⊥AC交AC延長(zhǎng)線于點(diǎn)E,OE交AD于點(diǎn)F.
          (Ⅰ)求證:DE是⊙O的切線;
          (Ⅱ)若
          AC
          AB
          =
          3
          5
          ,求
          AF
          DF
          的值.
          (2)在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建坐標(biāo)系,已知曲線
          C:ρsin2θ=2acosθ(a>0),已知過(guò)點(diǎn)P(-2,-4)的直線L的參數(shù)方程為:
          x=-2+
          2
          2
          t
          y=-4+
          2
          2
          t
          ,直線L與曲線C分別交于M,N.
          (Ⅰ)寫出曲線C和直線L的普通方程;  
          (Ⅱ)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)(1)如圖,AB是圓O的直徑,P在AB的延長(zhǎng)線上,PD切圓O于點(diǎn)C.已知圓O半徑為y=x-1(1≤x≤2),OP=2,則PC=
           
          ,∠ACD的大小為
           

          (2)在極坐標(biāo)系中,點(diǎn)(2,
          π2
          )關(guān)于直線l:ρcosθ=1的對(duì)稱點(diǎn)的一個(gè)極坐標(biāo)為
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案