【題目】已知橢圓:
和圓
:
,
,
為橢圓
的左、右焦點(diǎn),點(diǎn)
在橢圓
上,當(dāng)直線
與圓
相切時(shí),
.
(Ⅰ)求的方程;
(Ⅱ)直線:
與
軸交于點(diǎn)
,且與橢圓
和圓
都相切,切點(diǎn)分別為
,
,記
和
的積分別為
和
,求
的最小值.
【答案】(Ⅰ);(Ⅱ)
.
【解析】
(I) 由題意可得,設(shè)
,運(yùn)用直線和圓相切的條件,可得
,結(jié)合a,b, c的關(guān)系,解得a, c,進(jìn)而得到橢圓方程;
(Ⅱ)設(shè),
,將
代入
,結(jié)合直線和橢圓相切的條件判別式為0,解得M的坐標(biāo),可得
的面積
,再由直線和圓相切的條件,解方程可得N的坐標(biāo),求得Q的坐標(biāo),計(jì)算
的面積為
,求得
的表達(dá)式,化簡(jiǎn)后運(yùn)用基本不等式即可得證.
(Ⅰ)由題可知. ①
設(shè),則由
與圓相切時(shí)
得
,即
. ②
將①②代入解得
.
所以的方程為
.
(Ⅱ)設(shè),
,
將代入
得
,
由直線與橢圓
相切得
即
,且
,
則的面積
.
由直線與圓
相切,設(shè)
:
,與
聯(lián)立得
.
直線:
與
軸交于點(diǎn)
,則
.
則的面積
,
從而.(當(dāng)且僅當(dāng)
時(shí)等號(hào)成立),
所以的最小值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年1月3日嫦娥四號(hào)探測(cè)器成功實(shí)現(xiàn)人類歷史上首次月球背面軟著陸,我國(guó)航天事業(yè)取得又一重大成就,實(shí)現(xiàn)月球背面軟著陸需要解決的一個(gè)關(guān)鍵技術(shù)問(wèn)題是地面與探測(cè)器的通訊聯(lián)系.為解決這個(gè)問(wèn)題,發(fā)射了嫦娥四號(hào)中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點(diǎn)的軌道運(yùn)行.
點(diǎn)是平衡點(diǎn),位于地月連線的延長(zhǎng)線上.設(shè)地球質(zhì)量為M1,月球質(zhì)量為M2,地月距離為R,
點(diǎn)到月球的距離為r,根據(jù)牛頓運(yùn)動(dòng)定律和萬(wàn)有引力定律,r滿足方程:
.
設(shè),由于
的值很小,因此在近似計(jì)算中
,則r的近似值為
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
,
為自然對(duì)數(shù)的底數(shù).
(Ⅰ)若為單調(diào)遞增函數(shù),求實(shí)數(shù)
的取值范圍;
(Ⅱ)當(dāng)存在極小值時(shí),設(shè)極小值點(diǎn)為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】湖北七市州高三5月23日聯(lián)考后,從全體考生中隨機(jī)抽取44名,獲取他們本次考試的數(shù)學(xué)成績(jī)和物理成績(jī)
,繪制成如圖散點(diǎn)圖:
根據(jù)散點(diǎn)圖可以看出與
之間有線性相關(guān)關(guān)系,但圖中有兩個(gè)異常點(diǎn)
.經(jīng)調(diào)查得知,
考生由于重感冒導(dǎo)致物理考試發(fā)揮失常,
考生因故未能參加物理考試.為了使分析結(jié)果更科學(xué)準(zhǔn)確,剔除這兩組數(shù)據(jù)后,對(duì)剩下的數(shù)據(jù)作處理,得到一些統(tǒng)計(jì)的值:
其中
,
分別表示這42名同學(xué)的數(shù)學(xué)成績(jī)、物理成績(jī),
,2,…,42,
與
的相關(guān)系數(shù)
.
(1)若不剔除兩名考生的數(shù)據(jù),用44組數(shù)據(jù)作回歸分析,設(shè)此時(shí)
與
的相關(guān)系數(shù)為
.試判斷
與
的大小關(guān)系,并說(shuō)明理由;
(2)求關(guān)于
的線性回歸方程,并估計(jì)如果
考生參加了這次物理考試(已知
考生的數(shù)學(xué)成績(jī)?yōu)?/span>125分),物理成績(jī)是多少?
(3)從概率統(tǒng)計(jì)規(guī)律看,本次考試七市州的物理成績(jī)服從正態(tài)分布
,以剔除后的物理成績(jī)作為樣本,用樣本平均數(shù)
作為
的估計(jì)值,用樣本方差
作為
的估計(jì)值.試求七市州共50000名考生中,物理成績(jī)位于區(qū)間(62.8,85.2)的人數(shù)
的數(shù)學(xué)期望.
附:①回歸方程中:
②若,則
③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)).設(shè)
與
的交點(diǎn)為
,當(dāng)
變化時(shí),
的軌跡為曲線
.
(1)求的普通方程;
(2)設(shè)為圓
上任意一點(diǎn),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)
到準(zhǔn)線
的距離為2,直線
與拋物線交于不同的兩點(diǎn)
,
.
(1)求拋物線的方程;
(2)是否存在與的取值無(wú)關(guān)的定點(diǎn)
,使得直線
,
的斜率之和恒為定值?若存在,求出所有點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題共l4分)
已知函數(shù)f(x)=x +
, h(x)=
.
(I)設(shè)函數(shù)F(x)=f(x)一h(x),求F(x)的單調(diào)區(qū)間與極值;
(Ⅱ)設(shè)a∈R,解關(guān)于x的方程log4[]=1og2h(a-x)一log2h (4-x);
(Ⅲ)試比較與
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以坐標(biāo)原點(diǎn)O為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為:
,曲線C2的參數(shù)方程為:
,點(diǎn)N的極坐標(biāo)為
.
(Ⅰ)若M是曲線C1上的動(dòng)點(diǎn),求M到定點(diǎn)N的距離的最小值;
(Ⅱ)若曲線C1與曲線C2有有兩個(gè)不同交點(diǎn),求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠新購(gòu)置甲、乙兩種設(shè)備,分別生產(chǎn)A,B兩種產(chǎn)品,為了解這兩種產(chǎn)品的質(zhì)量,隨機(jī)抽取了200件進(jìn)行質(zhì)量檢測(cè),得到質(zhì)量指標(biāo)值的頻數(shù)統(tǒng)計(jì)表如下:
質(zhì)量指標(biāo)值 | 合計(jì) | ||||||
A產(chǎn)品頻數(shù) | 2 | 6 | a | 32 | 20 | 10 | 80 |
B產(chǎn)品頻數(shù) | 12 | 24 | b | 27 | 15 | 6 | n |
產(chǎn)品質(zhì)量2×2列聯(lián)表
產(chǎn)品質(zhì)量高 | 產(chǎn)品質(zhì)量一般 | 合計(jì) | |
A產(chǎn)品 | |||
B產(chǎn)品 | |||
合計(jì) |
附:
(1)求a,b,n的值,并估計(jì)A產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù);
(2)若質(zhì)量指標(biāo)值大于50,則說(shuō)明該產(chǎn)品質(zhì)量高,否則說(shuō)明該產(chǎn)品質(zhì)量一般.請(qǐng)根據(jù)頻數(shù)表完成列聯(lián)表,并判斷是否有
的把握認(rèn)為質(zhì)量高低與引入甲、乙設(shè)備有關(guān).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com