日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)三棱錐P-ABC中,PC、AC、BC兩兩垂直,BC=PC=1,AC=2,E、F、G分別是AB、AC、AP的中點.
          (Ⅰ)求證:平面GFE∥平面PCB;
          (Ⅱ)求GB與平面ABC所成角的正切值;
          (Ⅲ)求二面角A-PB-C的大小.
          分析:(Ⅰ)欲證平面GFE∥平面PCB,即證線面平行,易證EF∥平面PCB,GF∥平面PCB,又EF∩GF=F,根據(jù)面面平行的判定定理即可證得;
          (Ⅱ)連接BF,找出GB與平面ABC所成角為∠GBF,在直角三角形GBF中求出此角即可;
          (Ⅲ)設(shè)PB的中點為H,連接HC,AH,先證∠AHC為二面角A-PB-C的平面角,再在三角形AHC中求出此角.
          解答:解:(Ⅰ)證明:因為E、F、G分別是AB、AC、PA的中點,
          EF∥BC,GF∥PC(1分)
          且EF、GF?平面PCB,
          所以EF∥平面PCB,GF∥平面PCB.精英家教網(wǎng)
          又EF∩GF=F,
          所以平面GFE∥平面PCB.(4分)
          (Ⅱ)解:
          連接BF,因為GF∥PC,PC⊥平面ABC,
          所以GF⊥平面ABC,BF為斜線BG在平面ABC上的射影,則∠GBF為所求.(6分)
          GF=
          1
          2
          PC=
          1
          2
          ,
          在直角三角形BCF中,可求得BF=
          2

          在直角三角形GBF中tan∠GBF=
          GF
          BF
          =
          2
          4

          即BG與平面ABC所成角的正切值是
          2
          4
          .(8分)

          (Ⅲ)解:設(shè)PB的中點為H,連接HC,AH,
          精英家教網(wǎng)因為△PBC為等腰直角三角形,
          所以HC⊥PB.
          又AC⊥BC,AC⊥PC,且BC∩PC=C,
          所以AC⊥平面PCB.
          由三垂線定理得AH⊥PB.
          所以∠AHC為二面角A-PB-C的平面角.(11分)
          因為AC=2,HC=
          2
          2

          所以tan∠AHC=
          AC
          HC
          =2
          2

          所以∠AHC=arctan2
          2

          即二面角A-PB-C的大小是arctan2
          2
          .(13分)
          點評:本題主要考查了平面與平面之間的位置關(guān)系,考查空間想象能力、運算能力和推理論證能力,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐P-ABC中,△PAB是等邊三角形,∠PAC=∠PBC=90°.
          (1)證明:AB⊥PC;
          (2)若PC=4,且平面PAC⊥平面PBC,求三棱錐P-ABC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA⊥平面ABC,∠BAC=
          π2
          ,PA=2,AB=AC=4,點D、E、F分別為BC、AB、AC的中點.
          (I)求證:EF⊥平面PAD;
          (II)求點A到平面PEF的距離;
          (III)求二面角E-PF-A的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=kPA,點O、D分別是AC、PC的中點,OP⊥底面ABC.
          (Ⅰ)當(dāng)k=
          12
          時,求直線PA與平面PBC所成角的大;
          (Ⅱ)當(dāng)k取何值時,O在平面PBC內(nèi)的射影恰好為△PBC的重心?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐P-ABC中,PC⊥平面ABC,△ABC為正三角形,D、E、F分別是BC,PB,CA的中點.
          (1)證明平面PBF⊥平面PAC;
          (2)判斷AE是否平行于平面PFD,并說明理由;
          (3)若PC=AB=2,求三棱錐P-DEF的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在正三棱錐P-ABC中,M,N分別是PB,PC的中點,若截面AMN⊥側(cè)面PBC,則此棱錐截面與底面所成的二面角正弦值是
          6
          6
          6
          6

          查看答案和解析>>

          同步練習(xí)冊答案