日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分16分)
          點(diǎn),點(diǎn)A1(x1,0),A2(x,0),…,An(xn,0),…順次為x軸上的點(diǎn),其中x1=a(0<a≤1).對于任意n∈N*,點(diǎn)An、Bn、An+1構(gòu)成以Bn為頂點(diǎn)的等腰三角形.(1)求數(shù)列{yn}的通項(xiàng)公式,并證明它為等差數(shù)列;(2)求證:x- x是常數(shù),并求數(shù)列{ x}的通項(xiàng)公式;(3)上述等腰ΔAnBnAn+1中是否可能存在直角三角形,若可能,求出此時(shí)a的值;若不可能,請說明理由.
          (I)(II)(3)
          …2分
          相減,得x-x=2
          ∴x,x,x,…,x,…成等差數(shù)列;x,x,x,…,x,…成等差數(shù)列,4分
          ∴x= x+(n-1)·2=2n+a-2,x= x+(n-1)·2=(2-a)+(n-1)·2="2n-a                       "
          …7分
          (3)當(dāng)n奇數(shù)時(shí),An(n+a-1,0),An+1(n+1-a,0),所以 | AnAn+1 | =2(1-a);
          當(dāng)n是偶數(shù)時(shí),An(n-a,0),An+1(n+a,0),所以| AnAn-1 | ="2a  " …10分

          要使等腰三角形AnBnAn+1為直角三角形,必需且只需| AnAn-1 | ="2|" BnCn | .

          ……14分
          …15分
          …16分
          點(diǎn)評:復(fù)習(xí)時(shí)把握數(shù)列的概念,記住一些常用的結(jié)論,靈活的使用,注重對數(shù)列結(jié)合不等式等綜合問題的解決。數(shù)列與不等式均是高考的必考內(nèi)容,而將數(shù)列與不等式結(jié)合成大題則是高考中的一個(gè)難點(diǎn)問題,復(fù)習(xí)中應(yīng)強(qiáng)化這方面的訓(xùn)練.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          在等差數(shù)列{an}中,若S1S3=3S2,且a1+a2=1,則S10=(  )
          A.40B.45C.47D.50

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分18分)已知數(shù)列{an}、{bn}、{cn}的通項(xiàng)公式滿足bn=an+1-an,cn=bn+1-bn(n∈N*?),若數(shù)列{bn}是一個(gè)非零常數(shù)列,則稱數(shù)列{an}是一階等差數(shù)列;若數(shù)列{cn}是一個(gè)非零常數(shù)列,則稱數(shù)列{an}是二階等差數(shù)列?(1)試寫出滿足條件a=1,b1=1,cn=1(n∈N*?)的二階等差數(shù)列{an}的前五項(xiàng);(2)求滿足條件(1)的二階等差數(shù)列{an}的通項(xiàng)公式an;(3)若數(shù)列{an}首項(xiàng)a=2,且滿足cn-bn+1+3an=-2n+1(n∈N*?),求數(shù)列{an}的通項(xiàng)公式

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          設(shè)等比數(shù)列的公比為,前項(xiàng)和為,若成等差數(shù)列,則的值為       .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分12分)某企業(yè)為了適應(yīng)市場需求,計(jì)劃從2010年元月起,在每月固定投資5萬元的基礎(chǔ)上,元月份追加投資6萬元,以后每月的追加投資額均為之前幾個(gè)月投資額總和的20%,但每月追加部分最高限額為10萬元. 記第n個(gè)月的投資額為
          (1)求n的關(guān)系式;
          (2)預(yù)計(jì)2010年全年共需投資多少萬元?(精確到0.01,參考數(shù)據(jù):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知數(shù)列{an}的前n項(xiàng)和為Sn.且滿足a1=
          1
          2
          ,an=-2SnSn-1(n≥2)

          (1)證明:數(shù)列{
          1
          Sn
          }為等差數(shù)列;
          (2)求Sn及an

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          記等差數(shù)列的前項(xiàng)和為,若,,則該數(shù)列的公差(   )
          A.2B.3C.6D.7

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知等差數(shù)列的公差為,且,若,則
          (   )
          A.12B.8C.6D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知數(shù)列﹛﹜為等差數(shù)列,且,則的值為
          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊答案