日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓E: =1(a>b>0)的離心率e= ,并且經(jīng)過定點P( , ). (Ⅰ)求橢圓E的方程;
          (Ⅱ)問是否存在直線y=﹣x+m,使直線與橢圓交于A、B兩點,滿足OA⊥OB,若存在求m值,若不存在說明理由.

          【答案】解:(Ⅰ)由題意:e= = ,且 , 解得:a=2,b=1,∴橢圓E的方程為
          (Ⅱ)設(shè)A(x1 , y1),B(x2 , y2
          由題意得 (*)
          所以 =


          又方程(*)要有兩個不等實根,
          m的值符合上面條件,所以
          【解析】(Ⅰ)利用橢圓E: =1(a>b>0)的離心率e= ,并且經(jīng)過定點P( , ),建立方程,求出a,b,即可求橢圓E的方程;(Ⅱ)直線y=﹣x+m代入橢圓方程,利用韋達定理,結(jié)合 ,即可求m值.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓C: (a>b>0)的離心率為 ,左、右焦點分別為F1 , F2 , 點G在橢圓C上,且 =0,△GF1F2的面積為2.

          (1)求橢圓C的方程;
          (2)直線l:y=k(x﹣1)(k<0)與橢圓Γ相交于A,B兩點.點P(3,0),記直線PA,PB的斜率分別為k1 , k2 , 當 最大時,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知全集U=R,函數(shù) 的定義域為集合A,函數(shù)y=log2(x+2)的定義域為集合B,則集合(CUA)∩B=

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=x3+x,對任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,則x的取值范圍為

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=ax2﹣(a+2)x+lnx. (Ⅰ)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
          (Ⅱ)當a>0時,若f(x)在區(qū)間[1,e]上的最小值為﹣2,求a的取值范圍;
          (Ⅲ)若對任意x1 , x2∈(0,+∞),當x1≠x2時有 >0恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】函數(shù)f(x)= 是定義在(﹣1,1)上的奇函數(shù),且f( )=
          (1)確定函數(shù)f(x)的解析式;
          (2)用定義證明f(x)在(﹣1,1)上是增函數(shù);
          (3)解不等式f(t﹣1)+f(t)<0.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)
          (1)求證f(x)是R上的單調(diào)增函數(shù);
          (2)求函數(shù)f(x)的值域;
          (3)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)>0恒成立,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)函數(shù)f(x)= +lnx,則(
          A.x=2為f(x)的極大值點??
          B.x=2為f(x)的極小值點
          C.x= 為f(x)的極大值點??
          D.x= 為f(x)的極小值點

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=lnx+ax2+x(a∈R).
          (1)若函數(shù)f(x)在x=1處的切線平行于x軸,求實數(shù)a的值,并求此時函數(shù)f(x)的極值;
          (2)求函數(shù)f(x)的單調(diào)區(qū)間.

          查看答案和解析>>

          同步練習冊答案