日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 過橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左頂點(diǎn)A且斜率為k的直線交橢圓C于另一點(diǎn)B,且點(diǎn)B在x軸上的射影恰為右焦點(diǎn)F,若k=
          1
          2
          ,則橢圓的離心率e的值為
           
          分析:由于點(diǎn)B在x軸上的射影恰為右焦點(diǎn)F,可得B(c,
          b2
          a
          )
          .又A(-a,0),利用向量計(jì)算公式可得
          1
          2
          =k=
          b2
          a
          -0
          c+a
          ,化簡并利用離心率計(jì)算公式即可得出.
          解答:解:∵點(diǎn)B在x軸上的射影恰為右焦點(diǎn)F,∴B(c,
          b2
          a
          )
          ,
          又A(-a,0),
          1
          2
          =k=
          b2
          a
          -0
          c+a
          ,化為ac+a2=2b2=2(a2-c2),
          化為2c2+ac-a2=0,
          ∴2e2+e-1=0,解得e=
          1
          2

          故答案為:
          1
          2
          點(diǎn)評:本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          過橢圓C:
          x2
          a
          2
           
          +
          y2
          b
          2
           
          =1(a>b>0)
          的一個頂點(diǎn)作圓x2+y2=b2的兩條切線,切點(diǎn)分別為A,B,若∠AOB=90°(O是坐標(biāo)原點(diǎn)),則橢圓C的離心率為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)過橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左頂點(diǎn)A的斜率為k的直線交橢圓C于另一個點(diǎn)B,且點(diǎn)B在x軸上的射影恰好為右焦點(diǎn)F,若
          1
          3
          <k<
          1
          2
          ,則橢圓離心率的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2003•朝陽區(qū)一模)已知:如圖,過橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點(diǎn)F(-c,0)作垂直于長軸A1A2的直線與橢圓c交于P、Q兩點(diǎn),l為左準(zhǔn)線.
          (Ⅰ)求證:直線PA2、A1Q、l共點(diǎn);
          (Ⅱ)若過橢圓c左焦點(diǎn)F(-c,0)的直線斜率為k,與橢圓c交于P、Q兩點(diǎn),直線PA2、A1Q、l是否共點(diǎn),若共點(diǎn)請證明,若不共點(diǎn)請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2010•龍巖二模)過橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的一個焦點(diǎn)F且垂直于x軸的直線交橢圓于點(diǎn)(-1,
          2
          2
          )

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)是否存在過點(diǎn)A(-2,0)的直線l與橢圓C交于兩點(diǎn)M、N,使得|FP|=
          1
          2
          |MN|
          (其中P為弦MN的中點(diǎn))?若存在,求出直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知直線L:x=my+1過橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的右焦點(diǎn)F,且交橢圓C于A、B兩點(diǎn),點(diǎn)A、B在直線G:x=a2上的射影依次為點(diǎn)D、E.
          (1)若拋物線x2=4
          3
          y
          的焦點(diǎn)為橢圓C的上頂點(diǎn),求橢圓C的方程;
          (2)若N(
          a2+1
          2
          ,0)
          為x軸上一點(diǎn),求證:
          AN
          NE

          查看答案和解析>>

          同步練習(xí)冊答案