日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知圓,經(jīng)過橢圓(a>b>0)的右焦點(diǎn)F及上頂點(diǎn)B,過橢圓外一點(diǎn)(m,0)(m>a)傾斜角為的直線1交橢圓于C,D兩點(diǎn)
          (1)求橢圓的方程
          (2)若右焦點(diǎn)F在以線段CD為直徑的圓E的內(nèi)部,求m的取值范圍.
          【答案】分析:(1)依據(jù)題意可求得F,B的坐標(biāo),求得c和b,進(jìn)而求得a,則橢圓的方程可得.
          (2)設(shè)出直線l的方程,與橢圓方程聯(lián)立消去,利用判別式大于0求得m的范圍,設(shè)出C,D的坐標(biāo),利用韋達(dá)定理表示出x1+x2
          x1x2,進(jìn)而利用直線方程求得y1y2,表示出,進(jìn)而求得的表達(dá)式,利用F在圓E的內(nèi)部判斷出<0求得m的范圍,最后綜合可求得md 范圍.
          解答:解:(1)過點(diǎn)F、B,
          ∴F(2,0),
          故橢圓的方程為
          (2)直線l:

          消y得2x2-2mx+(m2-6)=0
          由△>0⇒,

          設(shè)C(x1,y1)、D(x2,y2),則x1+x2=m,,,

          ∵F在圓E的內(nèi)部,∴,

          點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問題.考查了學(xué)生綜合運(yùn)用所學(xué)知識(shí)解決實(shí)際問題的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,F(xiàn)1,F(xiàn)2為橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左、右焦點(diǎn),D,E是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率e=
          3
          2
          S△DEF2=1-
          3
          2
          .若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
          x0
          a
          ,
          y0
          b
          )稱為點(diǎn)M的一個(gè)“橢點(diǎn)”.直線l與橢圓交于A,B兩點(diǎn),A,B兩點(diǎn)的“橢點(diǎn)”分別為P,Q,已知以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)△AOB的面積是否為定值?若為定值,試求出該定值;若不為定值,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012屆重慶市“名校聯(lián)盟”高二第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)是短軸

          長(zhǎng)的2倍,且經(jīng)過點(diǎn)M. 平行于OM的直線軸上的截距為并交橢

          圓C于A、B兩個(gè)不同點(diǎn).

          (1)求橢圓C的標(biāo)準(zhǔn)方程;

          (2)求的取值范圍;

          y

           
          (3)求證:直線MA、MB與軸始終圍成一個(gè)等腰三角形.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知的面積為,.設(shè),,并且以為中心、為焦點(diǎn)的橢 圓經(jīng)過點(diǎn).當(dāng)取得最小值時(shí),則此橢圓的方程為      .

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案