日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知銳角△ABC的三內(nèi)角A、B、C所對(duì)應(yīng)的三邊分別為a、b、c,兩向量數(shù)學(xué)公式,數(shù)學(xué)公式滿足數(shù)學(xué)公式
          (Ⅰ)求角B的大。
          (Ⅱ)求函數(shù)數(shù)學(xué)公式的最大值以及此時(shí)角A的大。

          解:(Ⅰ)∵,,且
          ∴(a2+c2-b2)tanB-ac=0,即•tanB=
          又cosB=,tanB=
          ∴sinB=,
          ∵B為銳角,∴B=;…(6分)
          (Ⅱ)∵B=,∴A+C=,即C=-A,
          則y=2sin2A+cos=2sin2A+cos(-2A)
          =1-cos2A+cos2A+sin2A=sin2A-cos2A+1=sin(2A-)+1,…(9分)
          ,
          ∴當(dāng)時(shí),即時(shí),函數(shù)的最大值為2.…(12分)
          分析:(Ⅰ)根據(jù)兩向量的坐標(biāo),由兩向量垂直時(shí)數(shù)量積為0列出關(guān)系式,變形后利用余弦定理及同角三角函數(shù)間的基本關(guān)系化簡(jiǎn),可得出sinB的值,由三角形為銳角三角形可得出B為銳角,利用特殊角的三角函數(shù)值即可求出B的度數(shù);
          (Ⅱ)由B的度數(shù),得到A+C的度數(shù),用A表示出C,代入所求的式子中,第一項(xiàng)利用二倍角的余弦函數(shù)公式化簡(jiǎn),第二項(xiàng)利用兩角和與差的余弦函數(shù)公式化簡(jiǎn),合并整理后,再利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),由A的范圍,求出這個(gè)角的范圍,根據(jù)正弦函數(shù)的圖象與性質(zhì)可得出正弦函數(shù)的值域,進(jìn)而確定出函數(shù)的最大值,以及此時(shí)A的度數(shù).
          點(diǎn)評(píng):此題考查了平面向量的數(shù)量積運(yùn)算,余弦定理,同角三角函數(shù)間的基本關(guān)系,兩角和與差的正弦、余弦函數(shù)公式,二倍角的正弦函數(shù)公式,正弦函數(shù)的定義域與值域,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知銳角△ABC的三內(nèi)角A、B、C的對(duì)邊分別是a,b,c,且(b2+c2-a2)tanA=
          3
          bc

          (1)求角A的大;
          (2)求sin(A+10°)•[1-
          3
          tan(A-10°)]
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知銳角△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且滿足(a2+c2-b2)tanB=
          3
          ac,則角B為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=2sin(ωx-
          π
          6
          ),(A>0,ω>0,x∈R)
          ,且f(x)的最小正周期是2π.
          (1)求ω及f(0)的值;
          (2)已知銳角△ABC的三個(gè)內(nèi)角分別為A、B、C,若f(A+
          3
          )=
          8
          5
          ,f(B+
          6
          )=-
          30
          17
          ,求sinC的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•東莞一模)向量
          a
          =(
          1
          2
          ,
          1
          2
          sinx+
          3
          2
          cosx)
          ,
          b
          =(1,y)
          ,已知
          a
          b
          ,且有函數(shù)y=f(x).
          (1)求函數(shù)y=f(x)的周期;
          (2)已知銳角△ABC的三個(gè)內(nèi)角分別為A,B,C,若有f(A-
          π
          3
          )=
          3
          ,邊BC=
          7
          ,sinB=
          21
          7
          ,求AC的長(zhǎng)及△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•崇明縣二模)已知向量
          a
          =(sinx,cosx),
          b
          =(1,
          3
          ),設(shè)函數(shù)f(x)=
          a
          b

          (1)若x∈[0,π],求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)已知銳角△ABC的三內(nèi)角A、B、C所對(duì)的邊是a、b、c,若有f(A-
          π
          3
          )=
          3
          ,a=
          7
          ,sinB=
          21
          7
          ,求c邊的長(zhǎng)度.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案