日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=x3﹣2x2﹣4x.
          (1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
          (2)求函數(shù)f(x)在區(qū)間[﹣1,4]上的最大值和最小值.

          【答案】
          (1)解:∵函數(shù)f(x)=x3﹣2x2﹣4x,

          ∴f′(x)=3x2﹣4x﹣4,

          由f′(x)>0,得x<﹣ 或x>2,

          由f′(x)<0,得﹣ <x<2,

          ∴函數(shù)y=f(x)的單調(diào)增區(qū)間是(﹣∞,﹣ ),[2,+∞);單調(diào)減區(qū)間是[﹣ ,2].


          (2)解:由f′(x)=3x2﹣4x﹣4=0,

          ,x2=2,

          列表,得:

          x

          ﹣1

          (﹣1,﹣

          (﹣ ,2)

          2

          (2,4)

          4

          f′(x)

          +

          0

          0

          +

          f(x)

          1

          ﹣8

          16

          ∴f(x)在[﹣1,4]上的最大值為f(x)max=f(4)=16,最小值為f(x)min=f(2)=﹣8.


          【解析】(1)求出f′(x)=3x2﹣4x﹣4,利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)y=f(x)的單調(diào)增區(qū)間和單調(diào)減區(qū)間.(2)由f′(x)=3x2﹣4x﹣4=0,得 ,x2=2,列表討論能求出f(x)在[﹣1,4]上的最大值和最小值.
          【考點精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值比較,其中最大的是一個最大值,最小的是最小值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD是邊長為2的正方形,其它四個側(cè)面都是側(cè)棱長為 的等腰三角形.
          (Ⅰ)求二面角P﹣AB﹣C的大小;
          (Ⅱ)在線段AB上是否存在一點E,使平面PCE⊥平面PCD?若存在,請指出點E的位置并證明,若不存在請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在正方體ABCD﹣A1B1C1D1中,E為DD1的中點,則下列直線中與平面ACE平行的是(
          A.BA1
          B.BD1
          C.BC1
          D.BB1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】求和:Sn= + +…+ ,并用數(shù)學(xué)歸納法證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=(ex﹣1)(x﹣1)k , k∈N* , 若函數(shù)y=f(x)在x=1處取到極小值,則k的最小值為(
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】橢圓的焦距2,離心率為,上一點坐標為

          求該橢圓方程;

          對于直線,橢圓總存在不同的兩點關(guān)于直線對稱,且,

          實數(shù)取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,根據(jù)如圖的框圖所打印出數(shù)列的第四項是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=(x2﹣x﹣ )eax(a>0).
          (1)求函數(shù)y=f(x)的最小值;
          (2)若存在唯一實數(shù)x0 , 使得f(x0)+ =0成立,求實數(shù)a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= ax2﹣(a﹣1)x﹣lnx(a∈R且a≠0).
          (1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
          (2)記函數(shù)y=F(x)的圖象為曲線C.設(shè)點A(x1 , y1),B(x2 , y2)是曲線C上的不同兩點.如果在曲線C上存在點M(x0 , y0),使得:①x0= ;②曲線C在點M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值和諧切線”.當a=2時,函數(shù)f(x)是否存在“中值和諧切線”,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案