日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}與{bn}的前n項(xiàng)和分別是Sn和Tn,已知S100=41,T100=49,記Cn=anTn+bnSn-anbn(n∈N*),那么數(shù)列{Cn}的前100項(xiàng)和
          100i=1
          Ci
          =
           
          分析:這是一道數(shù)列的綜合題型,我們可以先根據(jù)an=Sn-Sn-1,對(duì)Cn=anTn+bnSn-anbn(n∈N*)進(jìn)行變形,再結(jié)合數(shù)列求和的方法,對(duì)數(shù)列{Cn}的前100項(xiàng)和進(jìn)行累加,即可得到答案.
          解答:解:∵an=Sn-Sn-1,bn=Tn-Tn-1
          則Cn=anTn+bnSn-anbn=SnTn-Sn-1Tn-1
          ∴c100=S100T100-S99T99
          c99=S99T99-S98T98

          c2=S2T2-S1T1
          c1=S1T1
          則:數(shù)列{Cn}的前100項(xiàng)和為:S100T100=41×49=2009
          故答案為:2009
          點(diǎn)評(píng):對(duì)于由遞推關(guān)系給出的數(shù)列,常借助于Sn+1-Sn=an+1轉(zhuǎn)化為an與an+1的關(guān)系式或Sn與Sn+1的關(guān)系式,進(jìn)而求出an與Sn使問(wèn)題得以解決.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}與{bn}滿足bn+1an+bnan+1=(-2)n+1,bn=
          3+(-1)n-1
          2
          ,n∈N*,且a1=2.
          (Ⅰ)求a2,a3的值
          (Ⅱ)設(shè)cn=a2n+1-a2n-1,n∈N*,證明{cn}是等比數(shù)列
          (Ⅲ)設(shè)Sn為{an}的前n項(xiàng)和,證明
          S1
          a1
          +
          S2
          a2
          +…+
          S2n-1
          a2n-1
          +
          S2n
          a2n
          ≤n-
          1
          3
          (n∈N*

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}與{bn}滿足:bnan+an+1+bn+1an+2=0,bn=
          3+(-1)n
          2
          ,n∈N*,且a1=2,a2=4.
          (Ⅰ)求a3,a4,a5的值;
          (Ⅱ)設(shè)cn=a2n-1+a2n+1,n∈N*,證明:{cn}是等比數(shù)列;
          (Ⅲ)設(shè)Sk=a2+a4+…+a2k,k∈N*,證明:
          4n
          k=1
          Sk
          ak
          7
          6
          (n∈N*)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}與{bn}有如下關(guān)系:a1=2,an+1=
          1
          2
          an,bn=
          an+1
          an-1
          則數(shù)列{bn}的通項(xiàng)公式為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}與{bn}有如下關(guān)系:a1=2,an+1=
          1
          2
          (an+
          1
          an
          ),bn=
          an+1
          an-1

          (1)求數(shù)列{bn}的通項(xiàng)公式.
          (2)設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,當(dāng)n≥2時(shí),求證:Sn<n+
          4
          3

          查看答案和解析>>

          同步練習(xí)冊(cè)答案