日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 12、如圖,△ABC內(nèi)接于⊙O,BD切⊙O于點B,AB=AC,若∠CBD=40°,則∠ABC等于
          70°
          分析:由弦切角定理可以得到∠DBC的度數(shù),再由等腰三角形的性質(zhì)和三角形內(nèi)角和定理即可求出∠ABC.
          解答:解:∵BD切⊙O于點B,
          ∴∠DBC=∠A=40°,
          ∵AB=AC,
          ∴∠ABC=∠C,
          ∴∠ABC=(180°-40°)÷2=70°.
          故答案為:70°
          點評:本題利用了弦切角定理,等邊對等角,三角形內(nèi)角和定理求解.屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,AB=2,BC=1,設(shè)AE與平面ABC所成的角為θ,且tanθ=
          3
          2
          ,四邊形DCBE為平行四邊形,DC⊥平面ABC.
          (1)求三棱錐C-ABE的體積;
          (2)證明:平面ACD⊥平面ADE;
          (3)在CD上是否存在一點M,使得MO∥平面ADE?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,△ABC內(nèi)接于⊙O,AB=AC,直線MN切⊙O于點C,BE∥MN交AC于點E.若AB=6,BC=4,求AE的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,△ABC內(nèi)接于圓柱的底面圓O,AB是圓O的直徑,AB=2,BC=1,DC、EB是兩條母線,且 tan∠EAB=
          3
          2

          (1)求三棱錐C-ABE的體積;
          (2)證明:平面ACD⊥平面ADE;
          (3)在CD上是否存在一點M,使得MO∥平面ADE,證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•沈陽二模)選修4-1:幾何證明選講
          如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,PA是過點A的直線,且∠PAC=∠ABC.
          (1)求證:PA是⊙O的切線;
          (2)如果弦CD交AB于點E,AC=8,CE:ED=6:5,AE:EB=2:3,求直徑AB的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖:△ABC內(nèi)接于⊙O,AB=AC,直線MN切⊙O于點C,BE∥MN交AC于點E,若AB=6,BC=4,則AE的長為( 。

          查看答案和解析>>

          同步練習(xí)冊答案