日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,△ABC內(nèi)接于⊙O,AB=AC,直線MN切⊙O于點C,BE∥MN交AC于點E.若AB=6,BC=4,求AE的長.
          分析:由已知中,直線MN切⊙O于點C,由弦線角定理我們易得∠BCM=∠A,再由BE∥MN,我們可得∠BCM=∠EBC,我們可判斷出△ABC∽△BEC,由相似三角形對應(yīng)邊成比例,結(jié)合AB=6,BC=4,即可求出AE的長.
          解答:解:∵∠BCM=∠A,BE∥MN,
          ∴∠BCM=∠EBC,∠A=∠EBC.又∠ACB是公共角,
          ∴△ABC∽△BEC,
          AC
          BC
          =
          BC
          EC

          ∵AB=AC=6,BC=4,
          ∴EC=
          BC2
          AC
          =
          42
          6
          =
          8
          3

          ∴AE=AC-EC=
          10
          3
          點評:本題考查的知識點是弦切角定理,三角形相似的判定與性質(zhì),其中根據(jù)已知條件判斷出△ABC∽△BEC是解答本題的關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,AB=2,BC=1,設(shè)AE與平面ABC所成的角為θ,且tanθ=
          3
          2
          ,四邊形DCBE為平行四邊形,DC⊥平面ABC.
          (1)求三棱錐C-ABE的體積;
          (2)證明:平面ACD⊥平面ADE;
          (3)在CD上是否存在一點M,使得MO∥平面ADE?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,△ABC內(nèi)接于圓柱的底面圓O,AB是圓O的直徑,AB=2,BC=1,DC、EB是兩條母線,且 tan∠EAB=
          3
          2

          (1)求三棱錐C-ABE的體積;
          (2)證明:平面ACD⊥平面ADE;
          (3)在CD上是否存在一點M,使得MO∥平面ADE,證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•沈陽二模)選修4-1:幾何證明選講
          如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,PA是過點A的直線,且∠PAC=∠ABC.
          (1)求證:PA是⊙O的切線;
          (2)如果弦CD交AB于點E,AC=8,CE:ED=6:5,AE:EB=2:3,求直徑AB的長.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖:△ABC內(nèi)接于⊙O,AB=AC,直線MN切⊙O于點C,BE∥MN交AC于點E,若AB=6,BC=4,則AE的長為( 。

          查看答案和解析>>

          同步練習冊答案