日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】網購逐步走入百姓生活,網絡(電子)支付方面的股票受到一些股民的青睞.某單位4位熱愛炒股的好朋友研究后決定購買“生意寶”和“九州通“這兩支股票中的一支.他們約定:每人通過擲一枚質地均勻的骰子決定購買哪支股票,擲出點數(shù)為56的人買“九州通”股票,擲出點數(shù)為小于5的人買“生意寶”股票,且必須從“生意寶”和“九州通”這兩支股票中選擇一支股票購買.

          1)求這4人中恰有1人購買“九州通”股票的機率;

          2)用,分別表示這4人中購買“生意寶”和“九州通”股票的人數(shù),記,求隨機變量X的分布列與數(shù)學期望.

          【答案】12)分布列見解析,

          【解析】

          1)根據(jù)相互獨立事件的概率公式計算;
          2)求出的各種取值對應的概率,從而得出分布列和數(shù)學期望.

          1)由于擲一枚質地均勻的骰子,擲出點數(shù)為56的概率為,因此這4人中每人購買“九州通”股票的概率為,購買“生意寶”股票的概率為.

          設“這4人中恰有人購買‘九州通’股票”為事件,1,234),則1,2,3,4).

          4人中恰有1人購買“九州通”股票的概率.

          2)易知X的所有可能取值為03,4.

          ,

          .

          所以X的分布列是

          X

          0

          3

          4

          P

          隨機變量X的數(shù)學期望.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.

          (I)在平面PAB內找一點M,使得直線CM∥平面PBE,并說明理由;

          (II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知數(shù)列的前n項和是等差數(shù)列,且.

          )求數(shù)列的通項公式;

          )令.求數(shù)列的前n項和.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的離心率為,短軸長為.

          (1)求的方程;

          (2)如圖,經過橢圓左頂點且斜率為的直線交于兩點,交軸于點,點為線段的中點,若點關于軸的對稱點為,過點為坐標原點)垂直的直線交直線于點,且面積為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在直角梯形中,,,,直角梯形可以通過直角梯形以直線為軸旋轉得到,且平面平面.

          1)求證:;

          2)設分別為、的中點,為線段上的點(不與點重合).

          i)若平面平面,求的長;

          ii)線段上是否存在,使得直線平面,若存在求的長,若不存在說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,四邊形均為菱形,,且.

          1)求證:平面;

          2)求二面角的余弦值;

          3)若為線段上的一點,滿足直線與平面所成角的正弦值為,求線段的長.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),其中函數(shù).

          1)求函數(shù)在點處的切線方程;

          2)當時,求函數(shù)上的最大值;

          3)當時,對于給定的正整數(shù),問:函數(shù)是否有零點?請說明理由.(參考數(shù)據(jù),

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】若無窮數(shù)列滿足:是正實數(shù),當時,,則稱是“—數(shù)列”.

          1)若是“—數(shù)列”且,寫出的所有可能值;

          2)設是“—數(shù)列”,證明:是等差數(shù)列當且僅當單調遞減;是等比數(shù)列當且僅當單調遞增;

          3)若是“—數(shù)列”且是周期數(shù)列(即存在正整數(shù),使得對任意正整數(shù),都有),求集合的元素個數(shù)的所有可能值的個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設函數(shù)\.

          1)若處的切線垂直于y軸,求a的值;

          2)若對于任意,都有恒成立,求a的取值范圍.

          查看答案和解析>>

          同步練習冊答案