日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知x,y均為正數(shù),且x≠y,則下列四個(gè)數(shù)中最大的一個(gè)是( 。
          分析:先取特殊的x、y值,分別代入計(jì)算,得最大的數(shù)是
          1
          2
          (
          1
          x
          +
          1
          y
          )
          ,接下來(lái)再用基本不等式和作差比較的方法,逐個(gè)加以比較大小,可以證出四個(gè)數(shù)中最大是
          1
          2
          (
          1
          x
          +
          1
          y
          )
          解答:解:先取x=1,y=2,得
          1
          2
          (
          1
          x
          +
          1
          y
          )
          =
          3
          4
          ,
          1
          x+y
          =
          1
          3
          1
          xy
          =
          2
          2
          ,
          1
          2(x2+y2)
          =
          10
          10

          可得最大的數(shù)是
          1
          2
          (
          1
          x
          +
          1
          y
          )
          ,接下來(lái)加以證明
          ∵x,y均為正數(shù),且x≠y,
          ∴x+y>2
          xy
          ,可得
          1
          x+y
          1
          2
          xy
          1
          xy

          ∵x2+y2>2xy,得2(x2+y2)>4xy
          1
          4xy
          1
          2(x2+y2)
          >0,開(kāi)方得
          1
          2
          xy
          1
          2(x2+y2)

          因此,
          1
          xy
          1
          2(x2+y2)

          1
          2
          (
          1
          x
          +
          1
          y
          )
          -
          1
          xy
          =
          (
          x
          -
          y
          )2
          2xy
          xy
          >0
          1
          2
          (
          1
          x
          +
          1
          y
          )
          1
          xy

          綜上所述,四個(gè)數(shù)中最大的一個(gè)是
          1
          2
          (
          1
          x
          +
          1
          y
          )

          故選A
          點(diǎn)評(píng):本題給出互不相等的正數(shù)x、y,叫我們比較關(guān)于x、y的四個(gè)式子的大小關(guān)系,考查了基本不等式和作差法比較大小的知識(shí),屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知x,y均為正數(shù),且x+y=1,則
          1
          x
          +
          9
          y
          的最小值為
          16
          16

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知x,y均為正數(shù),且x≠y,則下列四個(gè)數(shù)中最小的一個(gè)是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          下列幾個(gè)命題:
          ①不等式
          3
          x-1
          <x+1
          的解集為{x|x<-2,或x>2};
          ②已知a,b均為正數(shù),且
          1
          a
          +
          4
          b
          =1
          ,則a+b的最小值為9;
          ③已知m2+n2=4,x2+y2=9,則mx+ny的最大值為
          13
          2
          ;
          ④已知x,y均為正數(shù),且x+3y-2=0,則3x+27y+1的最小值為7;
          其中正確的有
          ②,④
          ②,④
          .(以序號(hào)作答)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•鎮(zhèn)江二模)已知x,y均為正數(shù),θ∈(
          π
          4
          π
          2
          )
          ,且滿(mǎn)足
          sinθ
          x
          =
          cosθ
          y
          cos2θ
          x2
          +
          sin2θ
          y2
          =
          10
          3(x2+y2)
          ,則
          x
          y
          的值為
          3
          3

          查看答案和解析>>