【題目】當(dāng)x∈[0,1]時,下列關(guān)于函數(shù)y=的圖象與
的圖象交點個數(shù)說法正確的是( 。
A. 當(dāng)時,有兩個交點B. 當(dāng)
時,沒有交點
C. 當(dāng)時,有且只有一個交點D. 當(dāng)
時,有兩個交點
【答案】B
【解析】
結(jié)合函數(shù)圖象、二次函數(shù)性質(zhì),分類討論判斷選擇項真假.
設(shè)f(x)=,g(x)=
,其中x∈[0,1]
A.若m=0,則與
在[0,1]上只有一個交點
,故A錯誤.
B.當(dāng)m∈(1,2)時,
即當(dāng)m∈(1,2]時,函數(shù)y=的圖象與
的圖象在x∈[0,1]無交點,故B正確,
C.當(dāng)m∈(2,3]時,,
當(dāng)時
,此時無交點,即C不一定正確.
D.當(dāng)m∈(3,+∞)時,g(0)=>1,此時f(1)>g(1),此時兩個函數(shù)圖象只有一個交點,故D錯誤,
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間之間的相關(guān)關(guān)系,新苗中學(xué)數(shù)學(xué)教師對新入學(xué)的名學(xué)生進(jìn)行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題的時間不少于
小時的有
人,余下的人中,在高三模擬考試中數(shù)學(xué)成績不足
分的占
,統(tǒng)計成績后,得到如下的
列聯(lián)表:
分?jǐn)?shù)大于等于 | 分?jǐn)?shù)不足 | 合計 | |
周做題時間不少于 | 4 | 19 | |
周做題時間不足 | |||
合計 | 45 |
()請完成上面的
列聯(lián)表,并判斷能否在犯錯誤的概率不超過
的前提下認(rèn)為“高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間有關(guān)”.
()(i)按照分層抽樣的方法,在上述樣本中,從分?jǐn)?shù)大于等于
分和分?jǐn)?shù)不足
分的兩組學(xué)生中抽取
名學(xué)生,設(shè)抽到的不足
分且周做題時間不足
小時的人數(shù)為
,求
的分布列(概率用組合數(shù)算式表示).
(ii)若將頻率視為概率,從全校大于等于分的學(xué)生中隨機(jī)抽取
人,求這些人中周做題時間不少于
小時的人數(shù)的期望和方差.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是由容量為100的樣本得到的頻率分布直方圖.其中前4組的頻率成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為a,在到
之間的數(shù)據(jù)個數(shù)為b,則a,b的值分別為( )
A.,78
B.,83
C.,78
D.,83
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,已知直線
的參數(shù)方程是
(m>0,t為參數(shù)),曲線
的極坐標(biāo)方程為
.
(1)求直線的普通方程和曲線
的直角坐標(biāo)方程;
(2)若直線與
軸交于點
,與曲線
交于點
,且
,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某單位全體員工年齡頻率分布表為:
年齡(歲) | [25,30) | [30,35) | [35,40) | [40,45) | [45,50) | [50,55) | 合計 |
人數(shù)(人) | 6 | 18 | 50 | 31 | 19 | 16 | 140 |
經(jīng)統(tǒng)計,該單位35歲以下的青年職工中,男職工和女職工人數(shù)相等,且男職工的年齡頻率分布直方圖和如圖所示:
(Ⅰ)求a;
(Ⅱ)求該單位男女職工的比例;
(Ⅲ)若從年齡在[25,30)歲的職工中隨機(jī)抽取兩人參加某項活動,求恰好抽取一名男職工和一名女職工的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等腰梯形ABCD中,,
,E,F為AB的三等分點,且
將
和
分別沿DE、CF折起到A、B兩點重合,記為點P.
證明:平面
平面PEF;
若
,求PD與平面PFC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c.滿足2acosC+bcosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)若a=2,△ABC的面積為,求C的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:與橢圓
交于A,B兩點,點P是橢圓C上異于A,B的一個動點,點Q在直線AB上,滿足
(
為坐標(biāo)原點)
(1)求點Q的軌跡方程;
(2)求四邊形OAPB的面積S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com