日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          (1)求的單調(diào)區(qū)間;

          (2)若,證明:

          (3)若,直線與曲線相切,證明:.

          (參考數(shù)據(jù):,

          【答案】(1)上單調(diào)遞增, 在上單調(diào)遞減;(2)見證明;(3)見證明

          【解析】

          (1)先求得,利用當(dāng),得的單調(diào)遞增區(qū)間,由,得的單調(diào)遞減區(qū)間.

          (2)分析可得0是的極小值點(diǎn),求得a,構(gòu)造函數(shù),利用導(dǎo)函數(shù)分析可得上單調(diào)遞減,在上單調(diào)遞增.則.

          從而.

          (3)設(shè)切點(diǎn)為,列出消掉k,得到.構(gòu)造函數(shù),分析可得.

          構(gòu)造,分析得到為增函數(shù),可得.得到.

          (1).

          當(dāng),得,則上單調(diào)遞增;

          當(dāng),得,則上單調(diào)遞減.

          (2)因?yàn)?/span>,所以,則0是的極小值點(diǎn).

          由(1)知,則.

          設(shè)函數(shù),則.

          設(shè)函數(shù),則.易知.

          恒成立.

          ,得;令,得.

          上單調(diào)遞減,在上單調(diào)遞增.

          .

          從而,即.

          (3)設(shè)切點(diǎn)為,

          當(dāng)時(shí),

          .

          .

          設(shè)函數(shù),

          ,則為增函數(shù).

          ,,

          .

          設(shè),則.

          ,則,為增函數(shù).

          .又.

          .

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為_____

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)討論的單調(diào)性;

          (2)若存在兩個(gè)極值點(diǎn),證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:

          (1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;

          (2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過和不超過的工人數(shù)填入下面的列聯(lián)表:

          超過

          不超過

          第一種生產(chǎn)方式

          第二種生產(chǎn)方式

          (3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

          附:,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為迎接2022年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開展了冰雪答題王冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.

          (Ⅰ)求的值;

          (Ⅱ)記表示事件從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績(jī)不低于80,估計(jì)的概率;

          (Ⅲ)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為優(yōu)秀,比賽成績(jī)低于80分為非優(yōu)秀.請(qǐng)?jiān)诖痤}卡上將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為比賽成績(jī)是否優(yōu)秀與性別有關(guān)?

          參考公式及數(shù)據(jù):

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某年級(jí)組織學(xué)生參加了某項(xiàng)學(xué)術(shù)能力測(cè)試,為了解參加測(cè)試學(xué)生的成績(jī)情況,從中隨機(jī)抽取20名學(xué)生的測(cè)試成績(jī)作為樣本,規(guī)定成績(jī)大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀.統(tǒng)計(jì)結(jié)果如圖:

          (1)求的值和樣本的平均數(shù);

          (2)從該樣本成績(jī)優(yōu)秀的學(xué)生中任選兩名,求這兩名學(xué)生的成績(jī)至少有一個(gè)落在內(nèi)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù),,其中的導(dǎo)函數(shù).

          1)令,,,猜想的表達(dá)式,并給出證明;

          2)若恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)橢圓的右焦點(diǎn)為,過的直線與橢圓交于兩點(diǎn),已知點(diǎn)的坐標(biāo)為.

          (Ⅰ)當(dāng)軸垂直時(shí),求點(diǎn)A、B的坐標(biāo)及的值

          (Ⅱ)設(shè)為坐標(biāo)原點(diǎn),證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱中,,,的中點(diǎn),點(diǎn)在平面內(nèi)的射影在線段上.

          (1)求證:

          (2)若是正三角形,求三棱柱的體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案