日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在三棱柱中,,,的中點,點在平面內(nèi)的射影在線段上.

          (1)求證:;

          (2)若是正三角形,求三棱柱的體積.

          【答案】(1)見證明;(2)

          【解析】

          1)分別證明,結(jié)合直線與平面垂直判定,即可。(2)法一:計算,結(jié)合,即可。法二 :計算,結(jié)合,計算體積,即可。法三:結(jié)合,計算結(jié)果,即可。

          (1)證明:設(shè)點在平面內(nèi)的射影為,

          ,且,因,所以.

          中,,

          ,在中,,

          ,

          ,故.

          ,故.

          (2)法一、

          由(1)得,故是三棱錐的高,

          是正三角形,,

          ,

          ,

          故三棱柱的體積,故三棱柱的體積為.

          法二、將三棱柱補成四棱柱如圖,因且高一樣,

          ,

          ,

          由(1)得,故是四棱柱的高,

          ,

          ,故三棱柱的體積為.

          法三、在三棱錐中,由(1)得,是三棱錐的高,6分

          到平面的距離為,

          ,即,

          的中點,故到平面的距離為,

          .

          故三棱柱的體積為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)求的單調(diào)區(qū)間;

          (2)若,證明:;

          (3)若,直線與曲線相切,證明:.

          (參考數(shù)據(jù):,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          ()當(dāng)時,求曲線在點處的切線方程;

          ()當(dāng)時,若在區(qū)間上的最小值為-2,其中是自然對數(shù)的底數(shù),求實數(shù)的取值范圍;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (Ⅰ)若內(nèi)單調(diào)遞減,求實數(shù)的取值范圍;

          (Ⅱ)若函數(shù)有兩個極值點分別為,,證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對由、排成的行,在其下面重新定義一行(比上面一行少一個字母).若其頭上的兩個字母不同,則在該位置寫上第三個字母;若其頭上的兩個字母相同,則在該位置寫上該字母.對新得到的行重復(fù)上面的操作,直到變?yōu)橐粋字母為止.圖給出了的一個例子.

          求所有的正整數(shù),使得對任意的初始排列,經(jīng)上述操作后,所得到的三角形的三個頂點上的字母要么全相同,要么兩兩不同.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)若的極值,求的值,并求的單調(diào)區(qū)間。

          (2)若時,,求實數(shù)的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中中,曲線的參數(shù)方程為為參數(shù), ). 以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

          (1)設(shè)是曲線上的一個動點,當(dāng)時,求點到直線的距離的最大值;

          (2)若曲線上所有的點均在直線的右下方,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四面體中,

          (1)證明:;

          (2)若,,四面體的體積為2,求二面角的余弦值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

          (1)求直線的普通方程與曲線的直角坐標(biāo)方程;

          (2)設(shè)點,直線與曲線交于不同的兩點,求的值.

          查看答案和解析>>

          同步練習(xí)冊答案