日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若將函數(shù)y=cos 2x的圖象向左平移 個(gè)單位長度,則平移后圖象的對稱軸為(
          A.x= (k∈Z)
          B.x= + (k∈Z)
          C.x= (k∈Z)
          D.x= + (k∈Z)

          【答案】C
          【解析】解:由題意,將函數(shù)y=cos 2x的圖象向左平移 個(gè)單位得y=cos 2(x+ )=cos(2x+ )的圖象, 令2x+ =kπ,
          求得x= ,故平移后函數(shù)的對稱軸為 x= ,k∈Z,
          故選:C.
          【考點(diǎn)精析】掌握函數(shù)y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}滿足a1=a,an+1= (n∈N*).
          (1)求a2 , a3 , a4;
          (2)猜測數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義在R上的單調(diào)函數(shù)f(x)滿足:f(x+y)=f(x)+f(y),若F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零點(diǎn),則a的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= cos(2x﹣ ).
          (1)若sinθ=﹣ ,θ∈( ,2π),求f(θ+ )的值;
          (2)若x∈[ , ],求函數(shù)f(x)的單調(diào)減區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于數(shù)列 , , ,若滿足,則稱數(shù)列數(shù)列

          若存在一個(gè)正整數(shù),若數(shù)列中存在連續(xù)的項(xiàng)和該數(shù)列中另一個(gè)連續(xù)的項(xiàng)恰好按次序?qū)?yīng)相等,則稱數(shù)列階可重復(fù)數(shù)列,

          例如數(shù)列因?yàn)?/span>, , , , 按次序?qū)?yīng)相等,所以數(shù)列階可重復(fù)數(shù)列

          I)分別判斷下列數(shù)列 , , , , , , .是否是階可重復(fù)數(shù)列?如果是,請寫出重復(fù)的這項(xiàng);

          II)若項(xiàng)數(shù)為的數(shù)列一定是 階可重復(fù)數(shù)列,則的最小值是多少?說明理由;

          III)假設(shè)數(shù)列不是階可重復(fù)數(shù)列,若在其最后一項(xiàng)后再添加一項(xiàng),均可 使新數(shù)列是階可重復(fù)數(shù)列,且,求數(shù)列的最后一項(xiàng)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知對任意平面向量 =(x,y),把 繞其起點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)θ得到點(diǎn)P.
          (1)已知平面內(nèi)點(diǎn)A(2,3),點(diǎn)B(2+2 ,1).把點(diǎn)B繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn) 角得到點(diǎn)P,求點(diǎn)P的坐標(biāo).
          (2)設(shè)平面內(nèi)曲線C上的每一點(diǎn)繞坐標(biāo)原點(diǎn)沿順時(shí)針方向旋轉(zhuǎn) 后得到的點(diǎn)的軌跡方程是曲線y= ,求原來曲線C的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)z1=2x+1+(x2﹣3x+2)i,z2=x2﹣2+(x2+x﹣6)i(x∈R).
          (1)若z1是純虛數(shù),求實(shí)數(shù)x的取值范圍;
          (2)若z1>z2 , 求實(shí)數(shù)x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)銳角△ABC的三個(gè)內(nèi)角為A,B,C,其中角B的大小為 ,則cosA+sinC的取值范圍為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)求證:1是函數(shù)的極值點(diǎn);

          (Ⅱ)設(shè)是函數(shù)的導(dǎo)函數(shù),求證: .

          查看答案和解析>>

          同步練習(xí)冊答案