【題目】若將函數(shù)y=cos 2x的圖象向左平移 個(gè)單位長度,則平移后圖象的對稱軸為( )
A.x= ﹣
(k∈Z)
B.x= +
(k∈Z)
C.x= ﹣
(k∈Z)
D.x= +
(k∈Z)
【答案】C
【解析】解:由題意,將函數(shù)y=cos 2x的圖象向左平移 個(gè)單位得y=cos 2(x+
)=cos(2x+
)的圖象, 令2x+
=kπ,
求得x= ﹣
,故平移后函數(shù)的對稱軸為 x=
﹣
,k∈Z,
故選:C.
【考點(diǎn)精析】掌握函數(shù)y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的
倍(縱坐標(biāo)不變),得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的
倍(橫坐標(biāo)不變),得到函數(shù)
的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=a,an+1= (n∈N*).
(1)求a2 , a3 , a4;
(2)猜測數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的單調(diào)函數(shù)f(x)滿足:f(x+y)=f(x)+f(y),若F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零點(diǎn),則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= cos(2x﹣
).
(1)若sinθ=﹣ ,θ∈(
,2π),求f(θ+
)的值;
(2)若x∈[ ,
],求函數(shù)f(x)的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)列,
,
,
,若滿足
,則稱數(shù)列
為“
數(shù)列”.
若存在一個(gè)正整數(shù),若數(shù)列
中存在連續(xù)的
項(xiàng)和該數(shù)列中另一個(gè)連續(xù)的
項(xiàng)恰好按次序?qū)?yīng)相等,則稱數(shù)列
是“
階可重復(fù)數(shù)列”,
例如數(shù)列因?yàn)?/span>
,
,
,
與
,
,
,
按次序?qū)?yīng)相等,所以數(shù)列
是“
階可重復(fù)數(shù)列”.
(I)分別判斷下列數(shù)列,
,
,
,
,
,
,
,
,
.是否是“
階可重復(fù)數(shù)列”?如果是,請寫出重復(fù)的這
項(xiàng);
(II)若項(xiàng)數(shù)為的數(shù)列
一定是 “
階可重復(fù)數(shù)列”,則
的最小值是多少?說明理由;
(III)假設(shè)數(shù)列不是“
階可重復(fù)數(shù)列”,若在其最后一項(xiàng)
后再添加一項(xiàng)
或
,均可 使新數(shù)列是“
階可重復(fù)數(shù)列”,且
,求數(shù)列
的最后一項(xiàng)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知對任意平面向量 =(x,y),把
繞其起點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)θ角得到的向量
=(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)θ得到點(diǎn)P.
(1)已知平面內(nèi)點(diǎn)A(2,3),點(diǎn)B(2+2 ,1).把點(diǎn)B繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)
角得到點(diǎn)P,求點(diǎn)P的坐標(biāo).
(2)設(shè)平面內(nèi)曲線C上的每一點(diǎn)繞坐標(biāo)原點(diǎn)沿順時(shí)針方向旋轉(zhuǎn) 后得到的點(diǎn)的軌跡方程是曲線y=
,求原來曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)z1=2x+1+(x2﹣3x+2)i,z2=x2﹣2+(x2+x﹣6)i(x∈R).
(1)若z1是純虛數(shù),求實(shí)數(shù)x的取值范圍;
(2)若z1>z2 , 求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)銳角△ABC的三個(gè)內(nèi)角為A,B,C,其中角B的大小為 ,則cosA+sinC的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求證:1是函數(shù)的極值點(diǎn);
(Ⅱ)設(shè)是函數(shù)
的導(dǎo)函數(shù),求證:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com