日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若函數(shù)y=ax與y=
          b
          x
          在(0,+∞)
          上都是減函數(shù),則y=ax2+bx在(-∞,0)上是( 。
          分析:根據(jù)正比例函數(shù)和反比例函數(shù)的圖象和性質(zhì),可以求出a,b的值,進而求出函數(shù)y=ax2+bx的解析式,再由二次函數(shù)的圖象和性質(zhì)可以得到結(jié)論.
          解答:解:∵函數(shù)y=ax與y=
          b
          x
          在(0,+∞)
          上都是減當(dāng)函數(shù),
          ∴a<0,b>0
          故函數(shù)y=ax2+bx的圖象是開口朝下且對稱軸在Y軸右側(cè)的拋物線
          故y=ax2+bx在(-∞,0)上是增函數(shù)
          故選A
          點評:本題考查的知識點是函數(shù)的單調(diào)性的性質(zhì),熟練掌握基本初等函數(shù)的圖象和性質(zhì)是解答本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          若函數(shù)y=ax與y=-
          b
          x
          在(0,+∞)上都是減函數(shù),則y=ax2+bx在(0,+∞)上是( 。
          A、增函數(shù)B、減函數(shù)
          C、先增后減D、先減后增

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若函數(shù)y=ax與y=-
          bx
          在(0,+∞)上都是減函數(shù),則函數(shù)y=ax2+bx在(0,+∞)上是單調(diào)遞
          減函數(shù)
          減函數(shù)
          函數(shù).(填“增函數(shù)”或“減函數(shù)”)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2007年上海市徐匯區(qū)零陵中學(xué)高三3月綜合練習(xí)數(shù)學(xué)試卷(五)(解析版) 題型:解答題

          (1)已知函數(shù)f(x)=ax-x(a>1).
          ①若f(3)<0,試求a的取值范圍;
          ②寫出一組數(shù)a,x(x≠3,保留4位有效數(shù)字),使得f(x)<0成立;
          (2)在曲線上存在兩個不同點關(guān)于直線y=x對稱,求出其坐標;若曲線(p≠0)上存在兩個不同點關(guān)于直線y=x對稱,求實數(shù)p的范圍;
          (3)當(dāng)0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并取加以研究.當(dāng)0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.解題過程中可以利用;②將根據(jù)提出和解決問題的不同層次區(qū)別給分.)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三單元測試文科數(shù)學(xué)試卷 題型:選擇題

          若函數(shù)y=ax與y=-在(0,+∞)上都是減函數(shù),則y=ax2+bx在(0,+∞)

           

          上是(    )

             A.增函數(shù)     B.減函數(shù)   C.先增后減    D.先減后增

           

          查看答案和解析>>

          同步練習(xí)冊答案