日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定義在區(qū)間[0,1]上的函數(shù)y=,圖象如圖所示,對滿足0<x1x2<1的任意x1x2,給出下列結(jié)論:

          f(x1)-f(x2)>x1-x2

          x2f(x1)>x1f(x2);

          .

          其中正確結(jié)論的序號是     (把所有正確結(jié)論的序號都填上).

          解析:①由x1-x2

          即連結(jié)兩點(diǎn)(x1,),(x2,),兩點(diǎn)直線的斜率小于1.

          由題意結(jié)合導(dǎo)數(shù)的意義理解x1-x2不正確.

          ②由x2x1,

          設(shè)P1x1fx1)),P2x2,f(x2))

          結(jié)合圖形分析知成立,

          所以式子x2x1成立.

          ③由凸函數(shù)的定義理解式子成立.

          綜上所述,其中正確命題的序號為②③.

          答案:②③

          點(diǎn)評:本題考查數(shù)形結(jié)合的數(shù)學(xué)思想,導(dǎo)數(shù)的幾何意義,化歸思想,凸函數(shù)定義等.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          13、已知定義在區(qū)間(0,+∞)的非負(fù)函數(shù)f(x)的導(dǎo)數(shù)為f'(x),其滿足xf'(x)+f(x)<0,則在0<a<b時,下列結(jié)論一定正確的是
          (2)(3)

          (1)af'(a)<bf'(b)(2)af(a)>bf(b)(3)bf(a)>af(b)(4)bf'(a)>af'(b)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
          x1x2
          )=f(x1)-f(x2),且當(dāng)x>1時,f(x)<0.
          ①求f(1)的值;
          ②判斷f(x)的單調(diào)性;
          ③若f(3)=-1,解不等式f(|x|)<-2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
          x1x2
          )=f(x1)-f(x2),且當(dāng)x>1時,f(x)<0.
          (1)求f(1)的值;
          (2)判斷并證明f(x)的單調(diào)性;
          (3)若f(3)=-1,求f(x)在[2,9]上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
          x1x2
          )=f(x1)-f(x2),且當(dāng)x>1時,f(x)<0.
          (1)求f(1)的值.
          (2)判斷f(x)的單調(diào)性.
          (3)若f(3)=-1,解不等式f(|x|)<-2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
          x1x2
          )=f(x1)-f(x2)
          ,且當(dāng)x>1時,f(x)<0.
          (1)求f(1)的值;
          (2)判斷f(x)的單調(diào)性并予以證明;
          (3)若f(3)=-1,解不等式f(log2x)>-2.

          查看答案和解析>>

          同步練習(xí)冊答案