【題目】定義:若函數(shù)的圖象經(jīng)過變換
后所得的圖象對(duì)應(yīng)的函數(shù)與
的值域相同,則稱變換
是
的同值變換,下面給出了四個(gè)函數(shù)與對(duì)應(yīng)的變換:①
,
將函數(shù)
的圖象關(guān)于直線
作對(duì)稱變換;②
,
將函數(shù)
的圖象關(guān)于
軸作對(duì)稱變換;③
,
將函數(shù)
的圖象關(guān)于點(diǎn)
作對(duì)稱變換;④
,
將函數(shù)
的圖象關(guān)于點(diǎn)
作對(duì)稱變換.其中
是
的同值變換的有__________(寫出所有符合題意的序號(hào))
【答案】①③④
【解析】
根據(jù)變換得函數(shù)解析式,再求對(duì)應(yīng)函數(shù)值域,最后根據(jù)值域是否相同作判斷.
①值域?yàn)?/span>
,函數(shù)
的圖象關(guān)于直線
作對(duì)稱變換得
值域?yàn)?/span>
,所以是同值變換;
②值域?yàn)?/span>
,函數(shù)
的圖象關(guān)于
軸作對(duì)稱變換得
值域?yàn)?/span>
,所以不是同值變換;
③值域?yàn)?/span>
,函數(shù)
的圖象關(guān)于點(diǎn)
作對(duì)稱變換得
值域?yàn)?/span>
,所以是同值變換;
④值域?yàn)?/span>
,函數(shù)
的圖象關(guān)于點(diǎn)
作對(duì)稱變換得
值域?yàn)?/span>
,所以是同值變換;
故答案為:①③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),給出以下四個(gè)命題,其中真命題的序號(hào)是_______.
①時(shí),
單調(diào)遞減且沒有最值;
②方程一定有解;
③如果方程有解,則解的個(gè)數(shù)一定是偶數(shù);
④是偶函數(shù)且有最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在迎新年晚會(huì)上舉行抽獎(jiǎng)活動(dòng),有甲、乙兩個(gè)抽獎(jiǎng)方案供員工選擇;
方案甲:?jiǎn)T工最多有兩次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)的中獎(jiǎng)率為.第一次抽獎(jiǎng),若未中獎(jiǎng),則抽獎(jiǎng)結(jié)束.若中獎(jiǎng),則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎(jiǎng),規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎(jiǎng)金,不進(jìn)行第二次抽獎(jiǎng);若正面朝上,員工則須進(jìn)行第二次抽獎(jiǎng),且在第二次抽獎(jiǎng)中,若中獎(jiǎng),獲得獎(jiǎng)金1000元;若未中獎(jiǎng),則所獲獎(jiǎng)金為0元.
方案乙:?jiǎn)T工連續(xù)三次抽獎(jiǎng),每次中獎(jiǎng)率均為,每次中獎(jiǎng)均可獲獎(jiǎng)金400元.
(1)求某員工選擇方案甲進(jìn)行抽獎(jiǎng)所獲獎(jiǎng)金(元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進(jìn)行抽獎(jiǎng),試比較哪個(gè)方案更劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
為橢圓
:
的左、右焦點(diǎn),離心率為
,且橢圓
的上頂點(diǎn)到左、右頂點(diǎn)的距離之和為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線
交橢圓于
,
兩點(diǎn),若以
為直徑的圓過
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
是矩形,
平面
,
是等腰三角形,
,
是
的一個(gè)三等分點(diǎn)(靠近點(diǎn)
),
與
的延長(zhǎng)線交于點(diǎn)
,連接
.
(1)求異面直線與
所成角的余弦值;
(2)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)又本垂直于
軸,與橢圓
交于
兩點(diǎn),點(diǎn)
在直線
上,
.
(1)求點(diǎn)的軌跡
的方程;
(2)直線與橢圓
相交于
,與曲線
相切于點(diǎn)
,
為坐標(biāo)原點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心為
,直線l過點(diǎn)
且與x軸不重合,l交圓
于C,D兩點(diǎn),過
作
的平行線,交
于點(diǎn)E.設(shè)點(diǎn)E的軌跡為
.
(1)求的方程;
(2)直線與
相切于點(diǎn)M,
與兩坐標(biāo)軸的交點(diǎn)為A與B,直線
經(jīng)過點(diǎn)M且與
垂直,
與
的另一個(gè)交點(diǎn)為N,當(dāng)
取得最小值時(shí),求
的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com