日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)實(shí)數(shù)x1,x2,x3,x4,x5均不小于1,且x1•x2•x3•x4•x5=729,則max{x1x2,x2x3,x3x4,x4x5}的最小值是   
          【答案】分析:先根據(jù)基本不等式得x1x2+x3x4≥2,即取定一個(gè)x5后,x1x2,x3x4不會(huì)都小于,及x2x3+x4x5≥2+≥2,再研究使三個(gè)不等式等號都成立的條件,即可得出max{x1x2,x2x3,x3x4,x4x5}的最小值.
          解答:解:∵x1x2+x3x4≥2,即取定一個(gè)x5后,x1x2,x3x4不會(huì)都小于,
          同樣x2x3+x4x5≥2,
          +≥2,
          使三個(gè)不等式等號都成立,則
          x1x2=x3x4=,
          x2x3=x4x5=,
          x1=x5
          即x1=x3=x5,x2=x4 x1x2=x2x3=x3x4=x4x5
          所以729=x13×x22=,(x1x23=729×x2
          x2最小為1,
          所以x1x2最小值為9,
          此時(shí)x1=x3=x5=9 x2=x4=1.
          故答案為:9.
          點(diǎn)評:本題主要考查了進(jìn)行簡單的合情推理及基本不等式的應(yīng)用,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          15、設(shè)f(x)=x2+2|x|,對于實(shí)數(shù)x1,x2,給出下列條件:①x1>x2,②x12>x22,③x1>|x2|;其中能使f(x1)>f(x2)恒成立的是
          ②③
          (寫出所有答案)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=(2x+2)e-x(e為自然對數(shù)的底數(shù))
          (1)求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)設(shè)函數(shù)φ(x)=
          1
          2
          xf(x)+
          1
          2
          tf′(x)+e-x
          ,是否存在實(shí)數(shù)x1,x2∈[0,1],使得2φ(x1)<φ(x2)?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是定義在區(qū)間D上的函數(shù),若對任何實(shí)數(shù)α∈(0,1)以及D中的任意兩個(gè)實(shí)數(shù)x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)為定義在D上的C函數(shù).
          (Ⅰ)試判斷函數(shù)f1(x)=x2,f2=
          1x
          (x<0)
          是否為各自定義域上的C函數(shù),并說明理由;
          (Ⅱ)已知f(x)是R上的C函數(shù),m是給定的正整數(shù),設(shè)an=fn,n=0,1,2,…,m,且a0=0,am=2m.記Sf=a1+a2+…+am對于滿足條件的任意函數(shù)f(x),試求Sf的最大值;
          (Ⅲ)若g(x)是定義域?yàn)镽的函數(shù),且最小正周期為T,試證明g(x)不是R上的C函數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)y=f(x),(x∈R*)對于任意實(shí)數(shù)x1、x2∈R*,都滿足f(x1x2)=f(x1)+f(x2),且當(dāng)x>1時(shí),f(x)>0且f(4)=1
          (1)求證:f(1)=0
          (2)求f(
          116
          )
          的值
          (3)解不等式f(x)+f(x-3)≤1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=lnx+
          k
          x
          ,k∈R
          (1)若k=1,求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)若f(x)≥2+
          1-e
          x
          恒成立,求實(shí)數(shù)k的取值范圍;
          (3)設(shè)g(x)=xf(x)-k,若對任意兩個(gè)實(shí)數(shù)x1,x2滿足0<x1<x2,總存在g′(x0)=
          g(x1)-g(x2)
          x1-x2
          成立,證明x0>x1

          查看答案和解析>>

          同步練習(xí)冊答案