日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知兩圓的圓心在原點(diǎn)0,半徑分別是1和2,過點(diǎn)D任作一條射線0T,交小圓于點(diǎn)B,交大圓于點(diǎn)C,再過點(diǎn)B、c分別作y軸、x軸的垂線,兩垂線相交于點(diǎn)P,又A坐標(biāo)為(一1,0).
          (1)求動(dòng)點(diǎn)P的軌跡E的方程;
          (2)過點(diǎn)D(0,數(shù)學(xué)公式)的直線L交軌跡E于點(diǎn)M、N,線段MN中點(diǎn)為Q,當(dāng)L⊥QA時(shí),求直線l的方程.

          解:(1)設(shè)∠TOX=α則B(cosα,sinα),C(2cosα,2sinα),
          設(shè)P(x,y),由題意可知
          消去α可得
          (2)當(dāng)l⊥x軸時(shí),推出l的方程為:x=0,滿足AQ⊥l;符合題意;
          當(dāng)l與x軸不垂直時(shí).設(shè)l的方程為y=kx+,(k≠0),代入,
          設(shè)M(x1,y1),N(x2,y2),Q(x0,y0),則==,
          ==,

          化簡得4k2-5k+1=0解得k=1或k=,經(jīng)檢驗(yàn)k=1,△>0滿足題意.
          直線l的方程為:y=x+,綜上所述直線l的方程為x=0或y=x+
          分析:(1)設(shè)∠TOX=α則B(cosα,sinα),C(2cosα,2sinα),設(shè)P(x,y),由題意可求出P的參數(shù)方程,然后求出P的軌跡方程.
          (2)當(dāng)l⊥x軸時(shí),推出l的方程為:x=0,驗(yàn)證是否滿足AQ⊥l;當(dāng)l與x軸不垂直時(shí).設(shè)l的方程為y=kx+,(k≠0),代入,設(shè)M(x1,y1),N(x2,y2),Q(x0,y0),利用斜率關(guān)系求出直線方程.
          點(diǎn)評:本題是中檔題,考查軌跡方程的求法,此時(shí)方程的應(yīng)用,注意分類討論是解題的關(guān)鍵,容易疏忽.考查計(jì)算能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓G的中心在坐標(biāo)原點(diǎn),長軸在x軸上,離心率為
          3
          2
          ,兩個(gè)焦點(diǎn)分別為F1和F2,橢圓G上一點(diǎn)到F1和F2的距離之和為12.圓Ck:x2+y2+2kx-4y-21=0(k∈R)的圓心為點(diǎn)Ak
          (1)求橢圓G的方程
          (2)求△AkF1F2的面積
          (3)問是否存在圓Ck包圍橢圓G?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C的焦點(diǎn)在x軸上,中心在原點(diǎn),離心率e=
          3
          3
          ,直線l:y=x+2與以原點(diǎn)為圓心,橢圓C的短半軸為半徑的圓O相切.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)橢圓C的左、右頂點(diǎn)分別為A1、A2,點(diǎn)M是橢圓上異于A1、A2的任意一點(diǎn),設(shè)直線MA1、MA2的斜率分別為KMA1、KMA2,證明KMA1•KMA2為定值;
          (Ⅲ)設(shè)橢圓方程
          x2
          a2
          +
          y2
          b2
          =1
          ,A1、A2為長軸兩個(gè)端點(diǎn),M為橢圓上異于A1、A2的點(diǎn),KMA1、KMA2分別為直線MA1、MA2的斜率,利用上面(Ⅱ)的結(jié)論得KMA1•KMA2=
          -
          b
          a
          -
          b
          a
          (只需直接填入結(jié)果即可,不必寫出推理過程).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C的中心在原點(diǎn),離心率等于
          23
          ,右焦點(diǎn)F是圓(x-1)2+y2=1的圓心,過橢圓上位于y軸左側(cè)的一動(dòng)點(diǎn)P作該圓的兩條切線分別交y軸于M、N兩點(diǎn).
          (Ⅰ)求橢圓C的方程;
          (Ⅱ) 求線段MN的長的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知兩圓的圓心在原點(diǎn)0,半徑分別是1和2,過點(diǎn)D任作一條射線0T,交小圓于點(diǎn)B,交大圓于點(diǎn)C,再過點(diǎn)B、c分別作y軸、x軸的垂線,兩垂線相交于點(diǎn)P,又A坐標(biāo)為(一1,0).
          (1)求動(dòng)點(diǎn)P的軌跡E的方程;
          (2)過點(diǎn)D(0,
          53
          )的直線L交軌跡E于點(diǎn)M、N,線段MN中點(diǎn)為Q,當(dāng)L⊥QA時(shí),求直線l的方程.

          查看答案和解析>>

          同步練習(xí)冊答案