日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ln(1+x)-x
          (Ⅰ)求f(x)的單調(diào)區(qū)間;
          (Ⅱ)記f(x)在區(qū)間[0,π](n∈N*)上的最小值為bx令an=ln(1+n)-bx.如果對一切n,不等式
          an
          an+2
          -
          c
          an+2
          恒成立,求實數(shù)c的取值范圍.
          分析:(Ⅰ)求出原函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)大于0求函數(shù)的增區(qū)間,導(dǎo)函數(shù)小于0求函數(shù)的減區(qū)間;
          (Ⅱ)由(Ⅰ)知函數(shù)f(x)在區(qū)間[0,n](n∈N*)上為減函數(shù),則bn=f(n),代入an=ln(1+n)-bn后可得an,把不等式式
          an
          an+2
          -
          c
          an+2
          分離出c后利用放縮法可求c的最大值.
          解答:解:(I)因為f(x)=ln(1+x)-x,所以函數(shù)定義域為(-1,+∞),且f′(x)=
          1
          1+x
          -1=
          -x
          1+x

          由f′(x)>0,即
          -x
          1+x
          >0
          ,得:-1<x<0,所以f(x)的單調(diào)遞增區(qū)間為(-1,0);
          由f′(x)<0,即
          -x
          1+x
          <0
          ,得:x>0,所以f(x)的單調(diào)遞增區(qū)間為(0,+∞).
          (II)因為f(x)在[0,n]上是減函數(shù),所以bn=f(n)=ln(1+n)-n,
          則an=ln(1+n)-bn=ln(1+n)-ln(1+n)+n=n.
          如果對一切n,不等式
          an
          an+2
          -
          c
          an+2
          恒成立,
          等價于c<
          an+2
          (
          an+2
          -
          an
          )
          對一切n∈N*恒成立,
          an+2
          (
          an+2
          -
          an
          )=
          n+2
          (
          n+2
          -
          n
          )=
          n+2
          2
          n+2
          +
          n
          2
          n+2
          n+2
          +
          n+2
          =1

          因此c≤1,即實數(shù)c的取值范圍是(-∞,1].
          點評:本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了分離變量法,訓(xùn)練了利用放縮法求解不等式的最值,題目設(shè)置較為綜合,屬于難題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2x-2+ae-x(a∈R)
          (1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
          (2)當(dāng)a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2+2|lnx-1|.
          (1)求函數(shù)y=f(x)的最小值;
          (2)證明:對任意x∈[1,+∞),lnx≥
          2(x-1)
          x+1
          恒成立;
          (3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
          x1+x2
          2
          時,又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
          1
          f(n)
          }的前n項和為Sn,則S2012的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=xlnx
          (Ⅰ)求函數(shù)f(x)的極值點;
          (Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          3
          x
          a
          +
          3
          (a-1)
          x
          ,a≠0且a≠1.
          (1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
          (2)已知當(dāng)x>0時,函數(shù)在(0,
          6
          )上單調(diào)遞減,在(
          6
          ,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
          (3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案