日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,設(shè)角A,B,C的對(duì)邊分別為a,b,c,向量 =(cosA,sinA), =( ﹣sinA,cosA),若 =1.
          (1)求角A的大。
          (2)若b=4 ,且c= a,求△ABC的面積.

          【答案】
          (1)解:∵ =(cosA,sinA), =( ﹣sinA,cosA),且 =1,

          cosA﹣sinAcosA+sinAcosA=1,

          ∴cosA= ,

          則A=


          (2)解:∵cosA= ,b=4 ,c= a,

          ∴由余弦定理得:a2=b2+c2﹣2bccosA=32+2a2﹣8 a,

          解得:a=4 ,c= a=8,

          則SABC= bcsinA= ×4 ×8× =16


          【解析】(1)由兩向量的坐標(biāo)利用平面向量數(shù)量積運(yùn)算化簡(jiǎn)已知等式,整理后求出cosA的值,即可確定出A的度數(shù);(2)利用余弦定理列出關(guān)系式,將cosA,b,c= a代入求出a的值,進(jìn)而求出c的值,利用三角形面積公式即可求出三角形ABC面積.
          【考點(diǎn)精析】掌握正弦定理的定義和余弦定理的定義是解答本題的根本,需要知道正弦定理:;余弦定理:;;

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)偶函數(shù)f(x)(x∈R)的導(dǎo)函數(shù)是函數(shù)f′(x),f(2)=0,當(dāng)x<0時(shí),xf′(x)﹣f(x)>0,則使得f(x)>0成立的x的取值范圍是(
          A.(﹣∞,﹣2)∪(0,2)
          B.(﹣∞,﹣2)∪(2,+∞)
          C.(﹣2,0)∪(2,+∞)
          D.(0,2)∪(﹣2,0)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù)f(x)的定義域?yàn)閇2a﹣1,a+1],值域?yàn)閇a+3,4a],則a的取值范圍為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知結(jié)論:“在正三角形ABC中,若D是邊BC的中點(diǎn),G是三角形ABC的重心,則 ”,若把該結(jié)論推廣到空間,則有結(jié)論:“在棱長(zhǎng)都相等的四面體ABCD中,若△BCD的中心為M,四面體內(nèi)部一點(diǎn)O到四面體各面的距離都相等,則 =(
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線C:x2=2py(p>0),過其焦點(diǎn)作斜率為1的直線l交拋物線C于M、N兩點(diǎn),且|MN|=16. (Ⅰ)求拋物線C的方程;
          (Ⅱ)已知?jiǎng)訄AP的圓心在拋物線C上,且過定點(diǎn)D(0,4),若動(dòng)圓P與x軸交于A、B兩點(diǎn),且|DA|<|DB|,求 的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐E﹣ABCD中,底面ABCD為正方形,EC⊥平面ABCD,AB= ,CE=1,G為AC與BD交點(diǎn),F(xiàn)為EG中點(diǎn), (Ⅰ)求證:CF⊥平面BDE;
          (Ⅱ)求二面角A﹣BE﹣D的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合A={x|x2﹣1=0},B={x|x2﹣2ax+b=0},若A∪B=A,求實(shí)數(shù)a,b滿足的條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知全集U={x∈N*|x≤9},(UA)∩B={1,6},A∩(UB)={2,3},(UA)∩(UB)={4,5,7,8},則B=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)= +lg(x﹣1)+(x﹣3)0 的定義域?yàn)椋?)
          A.{x|1<x≤4}
          B.{x|1<x≤4且x≠3}
          C.{x|1≤x≤4且x≠3}
          D.{x|x≥4}

          查看答案和解析>>

          同步練習(xí)冊(cè)答案