日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. △ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a、b、c,若(a-b+c)(sinA-sinB+sinC)=-3asinC.
          (I)求角B;
          (Ⅱ)若f(x)=cos(2x-B)+2sin2 x,求f (x)的最小正周期及單調(diào)遞增區(qū)間.

          解:(I)由(a-b+c)(sinA-sinB+sinC)=-3asinC 利用余弦定理可得 (a+b+c)(a+c-b)=3ac,
          即 a2+c2-b2=3ac,再利用余弦定理求得 cosB=,
          ∴B=
          (Ⅱ)若f(x)=cos(2x-B)+2sin2 x=cos2xcos+sin2xsin+1-cos2x=sin(2x-)-1,
          故f (x)的最小正周期為 =π.
          再由 2kπ-≤2x-≤2kπ+,k∈z,kπ-≤x≤kπ+,k∈z,
          故f (x)的單調(diào)遞增區(qū)間為[kπ-,kπ+],k∈z.
          分析:(I)由條件求得a2+c2-b2=3ac,再利用余弦定理求得 cosB=,從而求得 B 的值.
          (Ⅱ)化簡(jiǎn)函數(shù)f(x)的解析式為 sin(2x-)-1,求出它的最小正周期,再由2kπ-≤2x-≤2kπ+,k∈z,求出x的范圍即可求得f (x)的單調(diào)遞增區(qū)間.
          點(diǎn)評(píng):本題主要考查余弦定理的應(yīng)用,正弦函數(shù)的周期性和單調(diào)增區(qū)間,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•豐臺(tái)區(qū)一模)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且asinB-bcosC=ccosB.
          (Ⅰ)判斷△ABC的形狀;
          (Ⅱ)若f(x)=
          1
          2
          cos2x-
          2
          3
          cosx+
          1
          2
          ,求f(A)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•德州一模)已知函數(shù)f(x)=
          3
          sinxcosx-cos2x+
          1
          2
          (x∈R)

          (I)求函數(shù)f(x)的最小正周期及在區(qū)間[0,
          12
          ]
          上的值域;
          (Ⅱ)在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,又f(
          A
          2
          +
          π
          3
          )=
          4
          5
          ,b=2
          ,面積S△ABC=3,求邊長(zhǎng)a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•盧灣區(qū)一模)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且a=2bcosC,b+c=3a.求sinA的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•石景山區(qū)一模)在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且(2a-c)cosB=bcosC.
          (Ⅰ)求角B的大;
          (Ⅱ)若A=
          π4
          ,a=2
          ,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在銳角△ABC中,角A、B、C所對(duì)的邊長(zhǎng)分別為a、b、c,向量
          m
          =(1,cosB),
          n
          =(sinB,-
          3
          )
          ,且
          m
          n

          (1)求角B的大小;
          (2)若△ABC面積為
          3
          3
          2
          ,3ac=25-b2,求a,c的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案