日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知復(fù)數(shù)z的實(shí)部和虛部都是整數(shù),
          (1)若復(fù)數(shù)z為純虛數(shù),且|z﹣1|=|﹣1+i|,求復(fù)數(shù)z;
          (2)若復(fù)數(shù)z滿足z+ 是實(shí)數(shù),且1<z+ ≤6,求復(fù)數(shù)z.

          【答案】
          (1)解:∵z為純虛數(shù),∴設(shè)z=ai(a∈R且a≠0),

          又|﹣1+i|= ,由|z﹣1|=|﹣1+i|,

          = ,解得a=±1,∴z=±i.


          (2)解:設(shè)z=a+bi(a,b∈Z,且a2+b2≠0).

          則z+ =a+bi+ =a+bi+ =a+ +(b﹣ )i.

          由z+ 是實(shí)數(shù),且1<z+ ≤6,∴b﹣ =0,即b=0或a2+b2=10

          又1<a+ ≤6,(*)

          當(dāng)b=0時(shí),(*)化為1<a+ ≤6無(wú)解.

          當(dāng)a2+b2=10時(shí),(*)化為1<2a≤6,∴ <a≤3.

          由a,b∈Z,知a=1,2,3.∴相應(yīng)的b=±3,± (舍),±1.

          因此,復(fù)數(shù)z為:1±3i或3±i


          【解析】(1)復(fù)數(shù)z為純虛數(shù),設(shè)出復(fù)數(shù)z,化簡(jiǎn)|z﹣1|=|﹣1+i|,求出a,即可求復(fù)數(shù)z;(2)設(shè)z=a+bi,化簡(jiǎn)復(fù)數(shù)z+ ,利用復(fù)數(shù)是實(shí)數(shù),且1<z+ ≤6,求解a,b,即可求復(fù)數(shù)z.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,其中.

          (1)求函數(shù)的極大值點(diǎn);

          (2)當(dāng)時(shí),若在上至少存在一點(diǎn),使成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在四棱錐P﹣ABCD中,ADBC,AD=AB=DC=BC=1,EPC的中點(diǎn),面PACABCD

          (1)證明:ED∥面PAB;

          (2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在極坐標(biāo)系中,已知曲線 , ,設(shè)交于點(diǎn).

          (1)求點(diǎn)的極坐標(biāo);

          (2)若直線過(guò)點(diǎn),且與曲線交于兩不同的點(diǎn),求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知斜三棱柱, , 在底面上的射影恰為的中點(diǎn),且.

          (1)求證: 平面

          (2)求到平面的距離;

          (3)求二面角的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓C: (a>b>0)過(guò)點(diǎn)(1, ),離心率為 ,過(guò)橢圓右頂點(diǎn)A的兩條斜率乘積為﹣ 的直線分別交橢圓C于M,N兩點(diǎn).
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)直線MN是否過(guò)定點(diǎn)D?若過(guò)定點(diǎn)D,求出點(diǎn)D的坐標(biāo);若不過(guò),請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,其前項(xiàng)和為,且

          (1)求數(shù)列的通項(xiàng)公式;

          (2)設(shè)有正整數(shù),使得成等差數(shù)列,求的值;

          (3)設(shè),對(duì)于給定的,求三個(gè)數(shù)經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列的充要條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓.

          (1)若橢圓的離心率為,且點(diǎn)在橢圓上,①求橢圓的方程;

          ②設(shè)分別為橢圓的右頂點(diǎn)和上頂點(diǎn),直線軸和軸相交于點(diǎn),求直線的方程;

          (2)設(shè) 過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),且均在的右側(cè), ,求橢圓離心率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知在雙曲線 中,F(xiàn)1 , F2分別是左右焦點(diǎn),A1 , A2 , B1 , B2分別為雙曲線的實(shí)軸與虛軸端點(diǎn),若以A1A2為直徑的圓總在菱形F1B1F2B2的內(nèi)部,則此雙曲線 離心率的取值范圍是(
          A.
          B.[ ,+∞)
          C.
          D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案