日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知a>0,命題p:?x>,x+
          ax
          ≥2
           恒成立;命題q:“直線x+y-a=0與圓(x-1)2+y2=1有公共點(diǎn)”,若命題p∧q為真命題,求實(shí)數(shù)a的取值范圍.
          分析:利用均值不等式和直線與圓有公共點(diǎn)的條件求得命題p、q為真命題時(shí)a的范圍,根據(jù)復(fù)合命題真值表判斷:命題p∧q為真命題,則p、q都為真命題,由此求交集可得答案.
          解答:解:當(dāng)命題p為真命題時(shí):對(duì)?x>0,∵x+
          a
          x
          ≥2
          a
          ,(a>0),
          ∴要使x+
          a
          x
          ≥2恒成立,應(yīng)有2
          a
          ≥2,∴a≥1;
          當(dāng)命題q為真命題時(shí)     由
          x+y-a=0
          (x-1)2+y2=1
            則2x2-2(a+1)x+a2=0
          ∴△=4(a+1)2-8a2≥0⇒1-
          2
          ≤a≤1+
          2

          ∵命題p∧q為真命題,則p、q都為真命題,
          綜上a的取值范圍是[1,1+
          2
          ].
          點(diǎn)評(píng):本題借助考查復(fù)合命題的真假判斷,考查了直線與圓的位置關(guān)系及均值不等式的應(yīng)用,關(guān)鍵是求命題p為真時(shí),a的取值范圍,同時(shí)要熟練掌握復(fù)合命題真值表.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,命題p:函數(shù)y=ax在R上單調(diào)遞減,q:設(shè)函數(shù)y=
          2x-2a(x≥2a)
          2a(x<2a)
          ,函數(shù)y>1恒成立,若p和q只有一個(gè)為真命題,則a的取值范圍
          0<a≤
          1
          2
          或a≥1
          0<a≤
          1
          2
          或a≥1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,命題p:?x>0,x+
          a
          x
          ≥2
          恒成立;命題q:?k∈R直線kx-y+2=0與橢圓x2+
          y2
          a2
          =1
          有公共點(diǎn).是否存在正數(shù)a,使得p∧q為真命題,若存在,請(qǐng)求出a的范圍,若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,命題p:?x>0,x+
          a
          x
          ≥2恒成立;命題q:?k∈R,直線kx-y+2=0與橢圓x2+
          y2
          a2
          =1恒有公共點(diǎn).問:是否存在正實(shí)數(shù)a,使得p∨q為真命題,p∧q為假命題?若存在,請(qǐng)求出a的取值范圍,若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞減,q:不等式x+|x-2a|>1的解集為R,若p和q中有且只有一個(gè)命題為真命題,求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案