日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】根據(jù)某電子商務(wù)平臺的調(diào)查統(tǒng)計顯示,參與調(diào)查的位上網(wǎng)購物者的年齡情況如圖.

          1已知、、三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求的值;

          2該電子商務(wù)平臺將年齡在之間的人群定義為高消費人群,其他的年齡段定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發(fā)放代金券,高消費人群每人發(fā)放元的代金券,潛在消費人群每人發(fā)放元的代金券.已經(jīng)采用分層抽樣的方式從參與調(diào)查的位上網(wǎng)購物者中抽取了人,現(xiàn)在要在這人中隨機抽取人進(jìn)行回訪,求此三人獲得代金券總和的分布列與數(shù)學(xué)期望.

          【答案】12分布列略,186.

          【解析】

          試題分析:1由于五個組的頻率之和等于1,即五個矩形的面積之和為1,即求得的知;

          2由已知高消費人群所占比例為,潛在消費人群的比例為,由分層抽樣的性質(zhì)知抽出的人中,高消費人群有人,潛在消費人群有人,隨機抽取的三人中代金券總和可能的取值為:,由離散隨機變量概率公式列得分布列,繼而求得數(shù)學(xué)期望.

          試題解析:1由于五個組的頻率之和等于1,故:

          ,

          又因為、三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列

          所以

          聯(lián)立解出

          3由已知高消費人群所占比例為,潛在消費人群的比例為

          由分層抽樣的性質(zhì)知抽出的人中,高消費人群有人,潛在消費人群有人,

          隨機抽取的三人中代金券總和可能的取值為:

          ;

          列表如下:

          數(shù)學(xué)期望

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱中,底面是邊長為2的等邊三角形, 的中點.

          (1)求證: 平面

          (2)若四邊形是正方形,且,求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知某中學(xué)聯(lián)盟舉行了一次“盟校質(zhì)量調(diào)研考試”活動,為了解本次考試學(xué)生的某學(xué)科成績情況,從中抽取部分學(xué)生的分?jǐn)?shù)(滿分為分,得分取正整數(shù),抽取學(xué)生的分?jǐn)?shù)均在之內(nèi))作為樣本(樣本容量為)進(jìn)行統(tǒng)計,按照的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(莖葉圖中僅列出了得分在的數(shù)據(jù))

          (Ⅰ)求樣本容量和頻率分布直方圖中的的值;

          (Ⅱ)在選取的樣本中,從成績在分以上(含分)的學(xué)生中隨機抽取名學(xué)生參加“省級學(xué)科基礎(chǔ)知識競賽”,求所抽取的名學(xué)生中恰有一人得分在內(nèi)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義:在數(shù)列中,若為常數(shù))則稱為“等方差數(shù)列”,下列是對“等方差數(shù)列”的有關(guān)判斷( )

          ①若是“等方差數(shù)列”,在數(shù)列 是等差數(shù)列;

          是“等方差數(shù)列”;

          ③若是“等方差數(shù)列”,則數(shù)列為常)也是“等方差數(shù)列”;

          ④若既是“等方差數(shù)列”又是等差數(shù)列,則該數(shù)列是常數(shù)數(shù)列.

          其中正確命題的個數(shù)為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】“石頭、剪刀、布”是個廣為流傳的游戲,游戲時甲乙雙方每次做“石頭”“剪刀”“布”三種手勢中的一種,規(guī)定:“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,同種手勢不分勝負(fù)須繼續(xù)比賽,假設(shè)甲乙兩人都是等可能地做這三種手勢.

          (1)列舉一次比賽時兩人做出手勢的所有可能情況;

          (2)求一次比賽甲取勝的概率,并說明“石頭、剪刀、布”這個廣為流傳的游戲的公平性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.

          1求橢圓的標(biāo)準(zhǔn)方程;

          2已知點,和平面內(nèi)一點,過點任作直線與橢圓相交于兩點,設(shè)直線的斜率分別為,,試求滿足的關(guān)系式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】小明準(zhǔn)備利用暑假時間去旅游,媽媽為小明提供四個景點,九寨溝、泰山、長白山、武夷山.小明決定用所學(xué)的數(shù)學(xué)知識制定一個方案來決定去哪個景點:(如圖)曲線和直線交于點.以為起點,再從曲線上任取兩個點分別為終點得到兩個向量,記這兩個向量的數(shù)量積為.若去九寨溝;若去泰山;若去長白山; 去武夷山.

          (1)若從這六個點中任取兩個點分別為終點得到兩個向量,分別求小明去九寨溝的概率和去泰山的概率;

          (2)按上述方案,小明在曲線上取點作為向量的終點,則小明決定去武夷山.點在曲線上運動,若點的坐標(biāo)為,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在人群流量較大的街道,有一中年人吆喝送錢,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:

          摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.

          1)摸出的3個球為白球的概率是多少?

          2)摸出的3個球為2個黃球1個白球的概率是多少?

          3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          (1)當(dāng)時,上恒成立,求實數(shù)的取值范圍;

          (2)當(dāng)時,若函數(shù)上恰有兩個不同的零點,求實數(shù)的取值范圍;

          (3)是否存在常數(shù),使函數(shù)和函數(shù)在公共定義域上具有相同的單調(diào)性?若存在,求出的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案