日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)橢圓數(shù)學(xué)公式過點(diǎn)M(數(shù)學(xué)公式,1),且左焦點(diǎn)為數(shù)學(xué)公式
          (1)求橢圓C的方程;
          (2)判斷是否存在經(jīng)過定點(diǎn)(0,2)的直線l與橢圓C交于A、B兩點(diǎn)并且滿足數(shù)學(xué)公式數(shù)學(xué)公式,若存在求出直線l的方程,不存在說明理由.

          解:(1)∵左焦點(diǎn)為F1(-,0),
          ∴c2=a2-b2=2,
          ∵橢圓過點(diǎn)M(,1),
          ,
          聯(lián)立,得a2=4,b2=2,
          ∴橢圓C方程:
          (2)存在經(jīng)過定點(diǎn)(0,2)的直線l與橢圓C交于A、B兩點(diǎn)并且滿足
          設(shè)直線l為y=kx+2,
          把y=kx+2代入,并整理,得(2k2+1)x2+8kx+4=0,
          設(shè)A(x1,y1),B(x2,y2),
          ,
          y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=,
          ,∴,
          ∴x1x2+y1y2=0,
          ,
          解得k=
          ∴直線l為
          分析:(1)由左焦點(diǎn)為F1(-,0),知c2=a2-b2=2,由橢圓過點(diǎn)M(,1),知,聯(lián)立,能推導(dǎo)出橢圓C方程.
          (2)設(shè)直線l為y=kx+2,把y=kx+2代入,并整理,得(2k2+1)x2+8kx+4=0,設(shè)A(x1,y1),B(x2,y2),
          ,,y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=,由,知x1x2+y1y2=0,所以,由此能求出直線l的方程.
          點(diǎn)評(píng):本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與橢圓、向量、韋達(dá)定理的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)過點(diǎn)M(
          2
          ,1)
          ,且左焦點(diǎn)為F1(-
          2
          ,0)

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)當(dāng)過點(diǎn)P(4,1)的動(dòng)直線l與橢圓C相交于兩不同點(diǎn)A,B時(shí),在線段AB上取點(diǎn)Q,滿足|
          AP
          |
          |
          QB
          |
          =|
          AQ
          |
          |
          PB
          |
          ,證明:點(diǎn)Q總在某定直線上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          過點(diǎn)M(
          2
          ,1)
          ,離心率為
          2
          2

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)當(dāng)過點(diǎn)P(4,1)的動(dòng)直線l與橢圓C相交于兩不同點(diǎn)A,B時(shí),在線段AB上取點(diǎn)Q,滿足
          |
          AP
          |
          |
          PB
          |
          =
          |
          AQ
          |
          |
          QB
          |
          =λ,證明:點(diǎn)Q的軌跡與λ無關(guān).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)橢圓方程為x2+=1,過點(diǎn)M(0,1)的直線l交橢圓于點(diǎn)A、B,O是坐標(biāo)原點(diǎn),點(diǎn)P滿足Equation.3=Equation.3+Equation.3),點(diǎn)N的坐標(biāo)為(,).當(dāng)l繞點(diǎn)M旋轉(zhuǎn)時(shí),求:

          (1)動(dòng)點(diǎn)P的軌跡方程;

          (2)|Equation.3|的最小值與最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:福建省期末題 題型:解答題

          設(shè)橢圓過點(diǎn)M(,1),且左焦點(diǎn)為
          (1)求橢圓C的方程;
          (2)判斷是否存在經(jīng)過定點(diǎn)(0,2)的直線l與橢圓C交于A、B兩點(diǎn)并且滿足·,若存在求出直線l的方程,不存在說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案