日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】求下列各曲線的標(biāo)準(zhǔn)方程.

          (1)長軸長為,離心率為,焦點在軸上的橢圓;

          (2)已知雙曲線的漸近線方程為,焦距為,求雙曲線的標(biāo)準(zhǔn)方程.

          【答案】(1);(2).

          【解析】試題分析:本題主要考查橢圓與雙曲線的方程與性質(zhì).(1) 設(shè)橢圓的方程為,由題意可得2a=12, ,求出a,b,c可得橢圓方程;(2)分雙曲線的焦點在x軸與y軸上兩種情況,結(jié)合條件漸近線方程為,焦距為進行求解.

          試題解析:

          (1)設(shè)橢圓的方程為,

          由題意可得2a=12, ,

          求解可得,

          所以橢圓的標(biāo)準(zhǔn)方程為;

          (2)當(dāng)雙曲線的焦點在x軸上時,

          設(shè)雙曲線的方程為

          因為雙曲線的漸近線方程為,焦距為,

          所以,

          求解可得,

          所以雙曲線的方程為;

          當(dāng)雙曲線的焦點在y軸上時,

          設(shè)雙曲線的方程為

          因為雙曲線的漸近線方程為,焦距為,

          所以,

          求解可得,

          所以雙曲線的方程為.

          所以雙曲線的標(biāo)準(zhǔn)方程為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在直角梯形中,,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,的中點,如圖2.

          (1)求證:平面

          (2)求證:平面;

          (3)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,若橢圓與圓相交于兩點,且圓在橢圓內(nèi)的弧長為

          1)求的值;

          2)過橢圓的中心作兩條直線交橢圓四點,設(shè)直線的斜率為, 的斜率為,且

          ①求直線的斜率;

          ②求四邊形面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R。
          (1)求f(x)的單調(diào)區(qū)間;
          (2)若f(x)存在極點x0 , 且f(x1)=f(x0),其中x1x0 , 求證:x1+2x0=3;
          (3)設(shè)a>0,函數(shù)g(x)=∣f(x)∣,求證:g(x)在區(qū)間[0,2]上的最大值不小于

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1

          年份x

          2011

          2012

          2013

          2014

          2015

          儲蓄存款y(千億元)

          5

          6

          7

          8

          10

          為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理, 得到下表2

          時間代號t

          1

          2

          3

          4

          5

          z

          0

          1

          2

          3

          5

          (Ⅰ)求z關(guān)于t的線性回歸方程;

          (Ⅱ)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達(dá)多少?

          (附:對于線性回歸方程,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線=的焦點為坐標(biāo)原點, 是拋物線上異于的兩點.

          (1)求拋物線的方程;

          (2)若直線的斜率之積為,求證:直線軸上一定點.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,曲線由曲線和曲線組成,其中點為曲線所在圓錐曲線的焦點,為曲線所在圓錐曲線的焦點,

          (1),求曲線的方程;

          (2)如圖,作直線平行于曲線的漸近線,交曲線于點,

          求證:的中點必在曲線的另一條漸近線上;

          (3)對于(1)中的曲線,若直線過點交曲線于點,面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)=Asin(ωx+φ)的部分圖象如圖所示.

          (1)f(x)的最小正周期及解析式;

          (2)設(shè)函數(shù)g(x)=f(x)-cos 2x,g(x)在區(qū)間上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).

          (1)若直線l過拋物線C的焦點,求拋物線C的方程;
          (2)已知拋物線C上存在關(guān)于直線l對稱的相異兩點P和Q.
          ①求證:線段PQ的中點坐標(biāo)為(2-p , -p);
          ②求p的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案