日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知A(,),B(,)是函數(shù)的圖象上的任意兩點(可以重合),點M在直線上,且.
          (1)求+的值及+的值
          (2)已知,當(dāng)時,+++,求;
          (3)在(2)的條件下,設(shè)=,為數(shù)列{}的前項和,若存在正整數(shù)、,
          使得不等式成立,求的值.

          (1)+. (2)="1-n."  (3)c="1," m=1.

          解析試題分析:(Ⅰ)∵點M在直線x=上,設(shè)M.
          ,即,,
          +="1."
          ① 當(dāng)=時,=,+=;
          ② 當(dāng)時,
          +=+===
          綜合①②得,+.      
          (Ⅱ)由(Ⅰ)知,當(dāng)+=1時, +
          ,k=.
          n≥2時,+++ ,      ①
           ,      ②
          ②得,2=-2(n-1),則=1-n. 
          當(dāng)n=1時,=0滿足="1-n." ∴="1-n."        
          (Ⅲ)==,=1++=.
          .
          =2-,=-2+=2-,∴,、m為正整
          數(shù),∴c=1,當(dāng)c=1時,,
          ∴1<<3,
          ∴m=1.       
          考點:分段函數(shù)的解析式求法及其圖象的作法;數(shù)列的求和;數(shù)列遞推式;相等向量與相反
          向量.
          點評:本題考查分段函數(shù),數(shù)列的求和,數(shù)列遞推式,相等向量與相反向量,考查學(xué)生分析
          問題解決問題的能力,是中檔題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的左焦點F為圓的圓心,且橢圓上的點到點F的距離最小值為。
          (I)求橢圓方程;
          (II)已知經(jīng)過點F的動直線與橢圓交于不同的兩點A、B,點M(),證明:為定值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點O為極點,x軸的非負半軸為極軸建立極坐標(biāo)系.已知曲線的參數(shù)方程為,曲線的極坐標(biāo)方程為
          (Ⅰ)將曲線的參數(shù)方程化為普通方程;
          (Ⅱ)判斷曲線與曲線的交點個數(shù),并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          拋物線的準(zhǔn)線與軸交于,焦點為,若橢圓、為焦點、且離心率為.                   
          (1)當(dāng)時,求橢圓的方程;
          (2)若拋物線與直線軸所圍成的圖形的面積為,求拋物線和直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)) 上的動點,點滿足點的軌跡為曲線.
          (1)求的方程;
          (2)在以為極點,軸的正半軸為極軸的極坐標(biāo)系中,射線的異于極點的交點為,與的異于極點的交點為,求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓()過點,其左、右焦點分別為,且.
          (1)求橢圓的方程;
          (2)若是直線上的兩個動點,且,則以為直徑的圓是否過定點?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          過點的直線交直線,過點的直線軸于點,.
          (1)求動點的軌跡的方程;
          (2)設(shè)直線l與相交于不同的兩點,已知點的坐標(biāo)為(-2,0),點Q(0,)在線段的垂直平分線上且≤4,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的長軸長是短軸長的兩倍,焦距為.
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)不過原點的直線與橢圓交于兩點、,且直線、、的斜率依次成等比數(shù)列,求△面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          方程的曲線是焦點在上的橢圓 ,求的取值范圍

          查看答案和解析>>

          同步練習(xí)冊答案