日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖3,已知二面角的大小為,菱形在面內(nèi),兩點(diǎn)在棱上,,的中點(diǎn),,垂足為.
          (1)證明:平面
          (2)求異面直線所成角的余弦值.

          (1)詳見解析  (2)

          解析試題分析:(1)題目已知,利用線面垂直的性質(zhì)可得,已知角,利用余弦定理即可說明,即垂直于面內(nèi)兩條相交的直線,根據(jù)線面垂直的判斷即可得到直線垂直于面.
          (2)菱形為菱形可得,則所成角與角大小相等,即求角的余弦值即可,利用菱形所有邊相等和一個(gè)角為即可求的的長(zhǎng)度,根據(jù)(1)可得,即角為二面角的平面角為,結(jié)合為直角三角形與的長(zhǎng)度,即可求的長(zhǎng)度,再直角中,已知,利用直角三角形中余弦的定義即可求的角的余弦值,進(jìn)而得到異面直線夾角的余弦值.
          (1)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5d/5/wq3yf4.png" style="vertical-align:middle;" />,,所以,連接,由題可知是正三角形,又的中點(diǎn),所以,而,故平面.

          (2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6a/9/1ccbf4.png" style="vertical-align:middle;" />,所以所成的角等于所成的角,即所成的角,由(1)可知,平面,所以,又,于是是二面角的平面角,從而,不妨設(shè),則,易知,在中,,連接,在中,,所以異面直線所成角的余弦值為.
          考點(diǎn):異面直線的夾角 二面角 線面垂直

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四棱錐中,丄平面,,,.
          (Ⅰ)證明:;
          (Ⅱ)求二面角的正弦值;
          (Ⅲ)求三棱錐外接球的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
          (1)求證:PC⊥BC;
          (2)求點(diǎn)A到平面PBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知在空間四邊形ABCD中,E,F(xiàn)分別是AB,AD的中點(diǎn),G,H分別是BC,CD上的點(diǎn),且=2.求證:直線EG,F(xiàn)H,AC相交于一點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)
          在平行四邊形中,,.將沿折起,使得平面平面,如圖.

          (1)求證: ;
          (2)若中點(diǎn),求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分別是棱A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且
          (1)求證:EF∥平面BDC1;  
          (2)求證:平面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,四棱錐中,底面為平行四邊形,,,是正三角形,平面平面
          (1)求證:;
          (2)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,直四棱柱中,,,,,E為CD上一點(diǎn),,

          (1)證明:BE⊥平面;
          (2)求點(diǎn)到平面的距離。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知空間四邊形ABCD中,AB=CD=3,E、F分別是BC、AD上的點(diǎn),并且BE∶EC=AF∶FD=1∶2,EF=,求AB和CD所成角的余弦值.

          查看答案和解析>>