【題目】過雙曲線的右焦點
作一條直線
,直線
與雙曲線相交于
兩點,且
,若有且僅有三條直線
,則雙曲線離心率的取值范圍為__________.
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}的各項均為正數(shù),a1=t,k∈N* , k≥1,p>0,an+an+1+an+2+…+an+k=6pn .
(1)當k=1,p=5時,若數(shù)列{an}成等比數(shù)列,求t的值;
(2)設數(shù)列{an}是一個等比數(shù)列,求{an}的公比及t(用p、k的代數(shù)式表示);
(3)當k=1,t=1時,設Tn=a1+ +
+…+
+
,參照教材上推導等比數(shù)列前n項和公式的推導方法,求證:{
Tn﹣
﹣6n}是一個常數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】年
月
日,“國際教育信息化大會”在山東青島開幕.為了解哪些人更關注“國際教育信息化大會”,某機構隨機抽取了年齡在
-
歲之間的
人進行調查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為:
,
,
,
,
,
.把年齡落在區(qū)間
和
內的人分別稱為“青少年”和“中老年”.
關注 | 不關注 | 合計 | |
青少年 | |||
中老年 | |||
合計 |
(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)(保留兩位小數(shù))和眾數(shù);
(2)根據(jù)已知條件完成列聯(lián)表,并判斷能否有
的把握認為“中老年”比“青少年”更加關注“國際教育信息化大會”;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足4nSn=(n+1)2an(n∈N*).a(chǎn)1=1
(Ⅰ)求an;
(Ⅱ)設bn= ,數(shù)列{bn}的前n項和為Tn , 求證:Tn
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為
,當年產(chǎn)量不足80千件時,
(萬元).當年產(chǎn)量不小于80千件時
(萬元).每件商品售價為0.05萬元.通過分析,該工廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關于年產(chǎn)量
(千件)的函數(shù)解析式;
(2)當年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在正三棱柱ABCA1B1C1中,AB=2,AA1=2,由頂點B沿棱柱側面(經(jīng)過棱AA1)到達頂點C1,與AA1的交點記為M.求:
(1)三棱柱側面展開圖的對角線長;
(2)從B經(jīng)M到C1的最短路線長及此時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx,g(x)= ax2+bx,a≠0.
(Ⅰ)若b=2,且h(x)=f(x)﹣g(x)存在單調遞減區(qū)間,求a的取值范圍;
(Ⅱ)設函數(shù)f(x)的圖象C1與函數(shù)g(x)圖象C2交于點P、Q,過線段PQ的中點作x軸的垂線分別交C1 , C2于點M、N,證明C1在點M處的切線與C2在點N處的切線不平行.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人進行圍棋比賽,約定每局勝者得1分,負者得0分,比賽進行到有一人比對方多2分或打滿8局時停止.設甲在每局中獲勝的概率為,且各局勝負相互獨立.已知第二局比賽結束時比賽停止的概率為
.
(1)求的值;
(2)設表示比賽停止時已比賽的局數(shù),求隨機變量
的分布列和數(shù)學期望
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com