已知函數(shù)

在


上的最大值為3,最小值為2,求實數(shù)

的取值范圍.

,
(1)當(dāng)

,即

時,

,解得:

;
(2)當(dāng)

,即

時,

,適合題意;
(3)當(dāng)

時,

,解得:

(舍).
綜上所述:

練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知

,函數(shù)

為自然數(shù)的底數(shù),
(1)若函數(shù)

在

上單調(diào)遞增,求

的取值范圍;
(2)函數(shù)

是否為

上的單調(diào)函數(shù)?若是,求出

的取值范圍,若不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)f(x)=

(a
x-a
-x) (a>0,且a≠1).
(1)判斷f(x)的單調(diào)性;
(2)驗證性質(zhì)f(-x)=-f(x),當(dāng)x∈(-1,1)時,并應(yīng)用該性質(zhì)求滿足f(1-m)+f(1-m
2)<0的實數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)f (x)="2cosx" (cosx+

sinx)-1,x∈R
小題1:求f (x)的最小正周期T;
小題2:求f (x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
指出函數(shù)

的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)

對任意

,都有

,且

> 0時,

< 0,

. (1)求

;
(2)若函數(shù)

定義在

上,求不等式

的解集。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
(4cosθ+3–2t)2+(3sinθ–1+2t)2,(θ、t為參數(shù))的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若函數(shù)f(x)=x
3(x∈R),則函數(shù)y=f(-x)在其定義域上是
A.單調(diào)遞減的偶函數(shù) | B.單調(diào)遞減的奇函數(shù) |
C.單凋遞增的偶函數(shù) | D.單涮遞增的奇函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若

在區(qū)間

上是增函數(shù),則

的取值范圍是
。
查看答案和解析>>