【題目】若存在正實數(shù)x,y使得x2+y2(lny-lnx)-axy=0(a∈R)成立,則a的取值范圍是( )
A. B.
C.
D.
【答案】B
【解析】
存在性問題轉(zhuǎn)化為有解問題求解,利用到函數(shù)研究其單調(diào)性求解最小可得a的范圍;
解:由x2+y2(lny-lnx)-axy=0(a∈R)成立,可得x>0,y>0;
同時除以xy,
可得 存在實數(shù)解;
令,
可得函數(shù),
令,
可得t=1,
當t在(0,1)時,f′(t)<0,那么f(t)在(0,1)上單調(diào)遞減;
當t在(1,+∞)時,f′(t)>0,那么f(t)在(1,+∞)上單調(diào)遞增;
∴f(t)min=f(1)=1;
使得x2+y2(lny-lnx)-axy=0(a∈R)存在實數(shù)解,
則a≥1,
故選:B.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓
:
上的動點到一個焦點的最遠距離與最近距離分別是
與
,
的左頂點為
與
軸平行的直線與橢圓
交于
、
兩點,過
、
兩點且分別與直線
、
垂直的直線相交于點
.
(1)求橢圓的標準方程;
(2)證明點在一條定直線上運動,并求出該直線的方程;
(3)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記焦點在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓
的頂點焦點為作相似橢圓
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓
交于
,
兩點,且與橢圓
僅有一個公共點,試判斷
的面積是否為定值(
為坐標原點)?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,,M是線段EF的中點,二面角
的大小為60°.
(1)求證:平面BDE;
(2)試在線段AC上找一點P,使得PF與CD所成的角是60°.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地統(tǒng)計局就該地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在[1000,1500)).
(1)求居民月收入在[2000,2500)的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)在月收入為[2500,3000),[3000,3500),[3500,4000]的三組居民中,采用分層抽樣方法抽出90人作進一步分析,則月收入在[3000,3500)的這段應抽多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱柱中,
平面
,
于點
,點
在棱
上,滿足
.
若
,求證:
平面
;
設平面
與平面
所成的銳二面角的大小為
,若
,試判斷命題“
”的真假,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列中,
,
是數(shù)列
的前
項和,且
.
(1)求,
,并求數(shù)列
的通項公式
;
(2)設,數(shù)列
的前
項和為
,若
對任意的正整數(shù)
都成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某樂園按時段收費,收費標準為:每玩一次不超過小時收費10元,超過
小時的部分每小時收費
元(不足
小時的部分按
小時計算).現(xiàn)有甲、乙二人參與但都不超過
小時,甲、乙二人在每個時段離場是等可能的。為吸引顧客,每個顧客可以參加一次抽獎活動。
(1) 用表示甲乙玩都不超過
小時的付費情況,求甲、乙二人付費之和為44元的概率;
(2)抽獎活動的規(guī)則是:顧客通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機數(shù),并按如右所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該顧客中獎;若電腦顯示“謝謝”,則不中獎,求顧客中獎的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com