日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知曲線y=,求:

          (1)曲線上與直線y=2x-4平行的切線的方程;

          (2)求過(guò)點(diǎn)P(0,5)且與曲線相切的切線的方程.

          思路分析:由y=對(duì)x求導(dǎo),可得到曲線y=的切線的斜率及切線方程,而曲線的切線與y=2x-4平行,即可確定所求切線與曲線y=的交點(diǎn),進(jìn)而求得切線方程.

          解:(1)設(shè)切點(diǎn)為(x0,y0),由y=得y′|x=x0=.

          ∵切線與y=2x-4平行,∴=2,解得x0=,y0=.

          則所求切線方程為y-=2(x-),即16x-8y+25=0.

          (2)∵點(diǎn)P(0,5)不在曲線y=上,故需設(shè)切點(diǎn)坐標(biāo)為M(t,u),則切線斜率為.

          又∵切線斜率為,∴=.∴2t-=t,解得t=4.

          ∴切點(diǎn)為M(4,10),斜率為.

          ∴切線方程為y-10=(x-4),即5x-4y+20=0.

              深化升華 本題可歸結(jié)出過(guò)曲線上一點(diǎn),求切線方程的方法.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          24、已知曲線y=x2+2x在點(diǎn)(1,f(1))處的切線為l.求l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知曲線y=x3+x+1
          (1)求曲線在點(diǎn)P(1,3)處的切線方程.
          (2)求曲線過(guò)點(diǎn)P(1,3)的切線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=x3+ax2+bx(a∈R),已知曲線y=f(x)在點(diǎn)M(-1,f(-1))處的切線方程是y=4x+3.
          (Ⅰ)求a,b的值;
          (Ⅱ)求函數(shù)f(x)在區(qū)間[m,1]上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知曲線y=sinx,求在點(diǎn)P()處的切線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知曲線y=.

          (1)求曲線在點(diǎn)P(1,1)處的切線方程;

          (2)求曲線過(guò)點(diǎn)Q(1,0)的切線方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案