日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 命題p:?x∈R,x2-ax+1≥0恒成立;命題q:方程x2-2x-a=0有實(shí)數(shù)根,若?p∧q為真命題,求實(shí)數(shù)a的取值范圍.
          ∵命題p:?x∈R,x2-ax+1≥0恒成立
          ∴若p為真,那么實(shí)數(shù)a的取值范圍:△=a2-4≤0
          ∴a∈[-2,2]
          又∵命題q:方程x2-2x-a=0有實(shí)數(shù)根
          ∴若q為真,那么實(shí)數(shù)a的取值范圍:△=4+4a≥0
          ∴a∈[-1,+∞)
          ∵若?p∧q為真命題
          ∴p假q真
          ∴實(shí)數(shù)a的取值范圍:(2,+∞)
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知命題p:“?x∈[1,2],x2-a≥0”;命題q:“?x∈R,x2+2ax+2a≤0”,若命題“p∨q”為假命題,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知命題p:“方程x2+y2-x+y+m=0對(duì)應(yīng)的曲線是圓”,命題q:“雙曲線mx2-y2=1的兩條漸近線的夾角為60°”.若這兩個(gè)命題中只有一個(gè)是真命題,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若命題P:“若x+y=0,則x,y互為相反數(shù)”命題P的否命題為Q,命題Q的逆命題為R,則R是P的逆命題的( 。
          A.逆命題B.否命題C.逆否命題D.原命題

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知命題p:函數(shù)f(x)=loga|x|在區(qū)間(0,+∞)上單調(diào)遞增,命題q:關(guān)于x的方程x2+2x+loga23=0的解集只有一個(gè)子集,若“p或q”為真,“¬p或¬q”也為真,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知命題p:
          x-5
          x
          <0,命題q:y=log2(x2-x-12)有意義.
          (1)若p∧q為真命題,求實(shí)數(shù)x的取值范圍;
          (2)若p∨¬q為假命題,求實(shí)數(shù)x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          設(shè)命題P:a2<a,命題Q:對(duì)任何x∈R,都有x2+4ax+1>0,命題P且Q為假,P或Q為真,則實(shí)數(shù)a的取值范圍是______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          ”是“函數(shù)為奇函數(shù)”的      條件.
          (從“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中選擇適當(dāng)?shù)奶顚懀?/div>

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          設(shè)a,b為實(shí)數(shù),則“0<ab<1”是“b<”的(  )
          A.充分不必要條件B.必要不充分條件
          C.充要條件D.既不充分也不必要條件

          查看答案和解析>>