日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【解析】函數(shù),點(diǎn)表示坐標(biāo)原點(diǎn),點(diǎn),若向量

          =,的夾角,(其

          ),設(shè),則=1.

          答案 1

                   .

          答案  0

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:2013屆江蘇省高二4月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

          在函數(shù)的圖象上有、三點(diǎn),橫坐標(biāo)分別為其中

          ⑴求的面積的表達(dá)式;

          ⑵求的值域.

          【解析】由題意利用分割可先表示三角形ABC的面積,然后應(yīng)用對(duì)數(shù)運(yùn)算性質(zhì)及二次函數(shù)的性質(zhì)求解函數(shù)的最大值,屬于知識(shí)的簡單綜合.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆江蘇南通市高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖是單位圓上的點(diǎn),分別是圓軸的兩交點(diǎn),為正三角形.

          (1)若點(diǎn)坐標(biāo)為,求的值;

          (2)若,四邊形的周長為,試將表示成的函數(shù),并求出的最大值.

          【解析】第一問利用設(shè) 

          ∵  A點(diǎn)坐標(biāo)為∴   ,

          (2)中 由條件知  AB=1,CD=2 ,

          中,由余弦定理得 

            ∴ 

          ∵       ∴   

          ∴  當(dāng)時(shí),即 當(dāng) 時(shí) , y有最大值5. .

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三第五次階段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

          汕頭二中擬建一座長米,寬米的長方形體育館.按照建筑要求,每隔米(為正常數(shù))需打建一個(gè)樁位,每個(gè)樁位需花費(fèi)萬元(樁位視為一點(diǎn)且打在長方形的邊上),樁位之間的米墻面需花萬元,在不計(jì)地板和天花板的情況下,當(dāng)為何值時(shí),所需總費(fèi)用最少?

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。先求需打個(gè)樁位.再求解墻面所需費(fèi)用為:,最后表示總費(fèi)用,利用導(dǎo)數(shù)判定單調(diào)性,求解最值。

          解:由題意可知,需打個(gè)樁位. …………………2分

          墻面所需費(fèi)用為:,……4分

          ∴所需總費(fèi)用)…7分

          ,則 

          當(dāng)時(shí),;當(dāng)時(shí),

          ∴當(dāng)時(shí),取極小值為.而在內(nèi)極值點(diǎn)唯一,所以.∴當(dāng)時(shí),(萬元),即每隔3米打建一個(gè)樁位時(shí),所需總費(fèi)用最小為1170萬元.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013屆山西省晉商四校高二下學(xué)期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

          設(shè)函數(shù)

          (1)當(dāng)時(shí),求曲線處的切線方程;

          (2)當(dāng)時(shí),求的極大值和極小值;

          (3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

          【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

          解:(1)當(dāng)……2分

             

          為所求切線方程。………………4分

          (2)當(dāng)

          ………………6分

          遞減,在(3,+)遞增

          的極大值為…………8分

          (3)

          ①若上單調(diào)遞增!酀M足要求!10分

          ②若

          恒成立,

          恒成立,即a>0……………11分

          時(shí),不合題意。綜上所述,實(shí)數(shù)的取值范圍是

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案