日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某公司計劃在辦公大廳建一面長為米的玻璃幕墻.先等距安裝根立柱,然后在相鄰的立柱之間安裝一塊與立柱等高的同種規(guī)格的玻璃.一根立柱的造價為6400元,一塊長為米的玻璃造價為元.假設所有立柱的粗細都忽略不計,且不考慮其他因素,記總造價為元(總造價=立柱造價+玻璃造價).

          (1)求關于的函數(shù)關系式;

          (2)當時,怎樣設計能使總造價最低?

          【答案】(1);(2)安裝8根立柱時,總造價最小.

          【解析】

          1)分析題意,建立函數(shù)關系模型,即可得出函數(shù)關系式;

          2)由(1)將函數(shù)解析式變形,根據(jù)基本不等式,即可求出最值.

          解:(1)依題意可知,所以,

          2

          ,且,∴.

          ,

          當且僅當,即時,等號成立,

          又∵,∴當時,.

          所以,安裝8根立柱時,總造價最小.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】選修4-4:坐標系與參數(shù)方程

          在平面直角坐標系中,以為極點, 軸的正半軸為極軸建立極坐標系.若直線的極坐標方程為,曲線的極坐標方程為,將曲線上所有點的橫坐標縮短為原來的一半,縱坐標不變,然后再向右平移一個單位得到曲線

          (Ⅰ)求曲線的直角坐標方程;

          (Ⅱ)已知直線與曲線交于兩點,點,求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】ABC的內(nèi)角A,B,C的對邊分別為ab,c,已知△ABC的面積為

          (1)求sinBsinC;

          (2)若6cosBcosC=1,a=3,求△ABC的周長.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知等差數(shù)列和等比數(shù)列滿足,

          1的通項公式;

          2求和:

          【答案】1;(2

          【解析】試題分析:(1)根據(jù)等差數(shù)列, 列出關于首項、公差的方程組,解方程組可得的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據(jù)題意列出關于首項 ,公比 的方程組,解得、的值,求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.

          試題解析:(1)設等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.

          所以an=2n1.

          (2)設等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.

          解得q2=3.所以.

          從而.

          型】解答
          束】
          18

          【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.

          (1)若,且為真,求實數(shù)的取值范圍;

          (2)若的充分不必要條件,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】為保障公平性,高考時每個考點都要安裝手機屏蔽儀,要求在考點周圍1千米處不能收到手機信號,如圖,檢查員抽查某市一考點,以考點正西千米的處開始為檢查起點,沿著一條北偏東方向的公路,以每小時12千米的速度行駛,并用手機接通電話,問從起點開始計時,最長經(jīng)過多少分鐘檢查員開始收不到信號(點開始),并至少持續(xù)多長時間(之間)該考點才算檢查合格?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在直三棱柱中,底面是邊長為的等邊三角形, 的中點,側棱,點上,點上,且, .

          (1)證明:平面平面;

          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】要得到函數(shù)的圖象, 只需將函數(shù)的圖象(

          A. 所有點的橫坐標伸長到原來的2(縱坐標不變), 再將所得的圖像向左平移個單位.

          B. 所有點的橫坐標伸長到原來的2(縱坐標不變), 再將所得的圖像向左平移個單位.

          C. 所有點的橫坐標縮短到原來的(縱坐標不變), 再將所得的圖像向左平移個單位.

          D. 所有點的橫坐標縮短到原來的(縱坐標不變), 再將所得的圖像向左平移個單位.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】選修44:坐標系與參數(shù)方程

          在直角坐標系中,直線的參數(shù)方程為(其中t為參數(shù)),在以原點O為極點,以軸為極軸的極坐標系中,曲線C的極坐標方程為

          1)求直線的普通方程及曲線的直角坐標方程;

          2)設是曲線上的一動點, 的中點為,求點到直線的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱函數(shù)上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù)

          1)當時,求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;

          2)若函數(shù)上是以為上界的有界函數(shù),求實數(shù)的取值范圍.

          查看答案和解析>>

          同步練習冊答案