日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,三棱錐P﹣ABC中,PA=PC,底面ABC為正三角形.

          (Ⅰ)證明:AC⊥PB;
          (Ⅱ)若平面PAC⊥平面ABC,AC=PC=2,求二面角A﹣PC﹣B的余弦值.

          【答案】(Ⅰ)證明:如圖,

          取AC中點(diǎn)O,連接PO,BO,

          ∵PA=PC,∴PO⊥AC,

          又∵底面ABC為正三角形,∴BO⊥AC,

          ∵PO∩OB=O,∴AC⊥平面POB,則AC⊥PB;

          (Ⅱ)解:∵平面PAC⊥平面ABC,且平面PAC∩平面ABC=AC,

          PO⊥AC,∴PO⊥平面ABC,

          以O(shè)為原點(diǎn),分別以O(shè)A、OB、OP所在直線為x、y、z軸建立空間直角坐標(biāo)系,

          ∵AC=PC=2,∴P(0,0, ),B(0, ,0),C(﹣1,0,0), ,

          ,

          設(shè)平面PBC的一個(gè)法向量為 ,

          ,取y=﹣1,得 ,

          是平面PAC的一個(gè)法向量,

          ∴cos< >=

          ∴二面角A﹣PC﹣B的余弦值為


          【解析】(1)取AC中點(diǎn)O,連接PO,BO,根據(jù)等腰三角形三線合一得出PO⊥AC,再由ABC為正三角形BO⊥AC,從而得到AC⊥平面POB,則AC⊥PB,(2)以O(shè)為原點(diǎn),分別以O(shè)A、OB、OP所在直線為x、y、z軸建立空間直角坐標(biāo)系,用法向量法求出二面角的余弦值.
          【考點(diǎn)精析】掌握空間中直線與直線之間的位置關(guān)系是解答本題的根本,需要知道相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某工藝品廠要設(shè)計(jì)一個(gè)如圖1所示的工藝品,現(xiàn)有某種型號(hào)的長(zhǎng)方形材料如圖2所示,其周長(zhǎng)為4m,這種材料沿其對(duì)角線折疊后就出現(xiàn)圖1的情況.如圖,ABCD(AB>AD)為長(zhǎng)方形的材料,沿AC折疊后AB'交DC于點(diǎn)P,設(shè)△ADP的面積為S2 , 折疊后重合部分△ACP的面積為S1
          (Ⅰ)設(shè)AB=xm,用x表示圖中DP的長(zhǎng)度,并寫出x的取值范圍;
          (Ⅱ)求面積S2最大時(shí),應(yīng)怎樣設(shè)計(jì)材料的長(zhǎng)和寬?
          (Ⅲ)求面積(S1+2S2)最大時(shí),應(yīng)怎樣設(shè)計(jì)材料的長(zhǎng)和寬?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD是∠DAB=60°且邊長(zhǎng)為a的菱形,側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD,若G為AD邊的中點(diǎn),
          (1)求證:BG⊥平面PAD;
          (2)求證:AD⊥PB;
          (3)若E為BC邊的中點(diǎn),能否在棱PC上找到一點(diǎn)F,使平面DEF⊥平面ABCD,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長(zhǎng)為2的正六邊形ABCDEF中,動(dòng)圓Q的半徑為1,圓心在線段CD(含端點(diǎn))上運(yùn)動(dòng),P是圓Q上及內(nèi)部的動(dòng)點(diǎn),設(shè)向量 (m,n為實(shí)數(shù)),則m+n的取值范圍是( 。

          A.(1,2]
          B.[5,6]
          C.[2,5]
          D.[3,5]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線C的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù)).
          (Ⅰ)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
          (Ⅱ)設(shè)曲線C經(jīng)過伸縮變換 得到曲線C',若點(diǎn)P(1,0),直線l與C'交與A,B,求|PA||PB|,|PA|+|PB|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖中的三個(gè)直角三角形是一個(gè)體積為20cm3的幾何體的三視圖,則該幾何體外接球的面積(單位:cm2)等于( 。

          A.55π
          B.75π
          C.77π
          D.65π

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左頂點(diǎn)為A,左焦點(diǎn)為F1(﹣2,0),點(diǎn)B(2, )在橢圓C上,直線y=kx(k≠0)與橢圓C交于E,F(xiàn)兩點(diǎn),直線AE,AF分別與y軸交于點(diǎn)M,N
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)在x軸上是否存在點(diǎn)P,使得無論非零實(shí)數(shù)k怎樣變化,總有∠MPN為直角?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=(log2x﹣2)(log4x﹣
          (1)當(dāng)x∈[2,4]時(shí).求該函數(shù)的值域;
          (2)若f(x)≥mlog2x對(duì)于x∈[4,16]恒成立,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c且a+2c=2bcosA.
          (1)求角B的大。
          (2)若b=2 ,a+c=4,求△ABC的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案