【題目】在平面直角坐標(biāo)系中,已知
是曲線(xiàn)
(
為參數(shù))上的動(dòng)點(diǎn),將
繞點(diǎn)
順時(shí)針旋轉(zhuǎn)90°得到
,設(shè)點(diǎn)
的軌跡為曲線(xiàn)
.以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線(xiàn)的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,直線(xiàn)與曲線(xiàn)
分別相交于異于極點(diǎn)
的
兩點(diǎn),點(diǎn)
,當(dāng)
時(shí),求直線(xiàn)
的斜率.
【答案】(1)曲線(xiàn)的極坐標(biāo)方程為
,曲線(xiàn)
的極坐標(biāo)方程為
.(2)2
【解析】
(1)先求出曲線(xiàn)和
的直角坐標(biāo)方程,再化成極坐標(biāo)方程;
(2)設(shè)點(diǎn)的極徑分別為
,得到
,
,由題得
,化簡(jiǎn)即得解.
(1)由題得曲線(xiàn)的直角坐標(biāo)方程為
,
由題知點(diǎn)的軌跡是以(2,0)為圓心,2為半徑的圓,所以曲線(xiàn)
的方程為
.
,
曲線(xiàn)的極坐標(biāo)方程為
,曲線(xiàn)
的極坐標(biāo)方程為
.
(2)在極坐標(biāo)系中,設(shè)點(diǎn)的極徑分別為
,則
因?yàn)辄c(diǎn)在曲線(xiàn)
上且
,所以
在直角三角形中
,則
所以,解得
或
,
當(dāng)時(shí),此時(shí)
與O重合,故舍去,
所以直線(xiàn)的斜率
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,
與
相交于點(diǎn)
,點(diǎn)
在線(xiàn)段
上,
.
(1)求證:平面
;
(2)若,求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn)M(﹣2,﹣1),離心率為
.過(guò)點(diǎn)M作傾斜角互補(bǔ)的兩條直線(xiàn)分別與橢圓C交于異于M的另外兩點(diǎn)P、Q.
(Ⅰ)求橢圓C的方程;
(Ⅱ)試判斷直線(xiàn)PQ的斜率是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高生產(chǎn)線(xiàn)的運(yùn)行效率,工廠(chǎng)對(duì)生產(chǎn)線(xiàn)的設(shè)備進(jìn)行了技術(shù)改造.為了對(duì)比技術(shù)改造后的效果,采集了生產(chǎn)線(xiàn)的技術(shù)改造前后各20次連續(xù)正常運(yùn)行的時(shí)間長(zhǎng)度(單位:天)數(shù)據(jù),并繪制了如下莖葉圖:
(Ⅰ)(1)設(shè)所采集的40個(gè)連續(xù)正常運(yùn)行時(shí)間的中位數(shù),并將連續(xù)正常運(yùn)行時(shí)間超過(guò)
和不超過(guò)
的次數(shù)填入下面的列聯(lián)表:
超過(guò) | 不超過(guò) | |
改造前 | ||
改造后 |
試寫(xiě)出,
,
,
的值;
(2)根據(jù)(1)中的列聯(lián)表,能否有的把握認(rèn)為生產(chǎn)線(xiàn)技術(shù)改造前后的連續(xù)正常運(yùn)行時(shí)間有差異?
附:,
0.050> | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(Ⅱ)工廠(chǎng)的生產(chǎn)線(xiàn)的運(yùn)行需要進(jìn)行維護(hù).工廠(chǎng)對(duì)生產(chǎn)線(xiàn)的生產(chǎn)維護(hù)費(fèi)用包括正常維護(hù)費(fèi)、保障維護(hù)費(fèi)兩種對(duì)生產(chǎn)線(xiàn)設(shè)定維護(hù)周期為天(即從開(kāi)工運(yùn)行到第
天(
)進(jìn)行維護(hù).生產(chǎn)線(xiàn)在一個(gè)生產(chǎn)周期內(nèi)設(shè)置幾個(gè)維護(hù)周期,每個(gè)維護(hù)周期相互獨(dú)立.在一個(gè)維護(hù)周期內(nèi),若生產(chǎn)線(xiàn)能連續(xù)運(yùn)行,則不會(huì)產(chǎn)生保障維護(hù)費(fèi);若生產(chǎn)線(xiàn)不能連續(xù)運(yùn)行,則產(chǎn)生保障維護(hù)費(fèi).經(jīng)測(cè)算,正常維護(hù)費(fèi)為0.5萬(wàn)元
次;保障維護(hù)費(fèi)第一次為0.2萬(wàn)元
周期,此后每增加一次則保障維護(hù)費(fèi)增加0.2萬(wàn)元.現(xiàn)制定生產(chǎn)線(xiàn)一個(gè)生產(chǎn)周期(以120天計(jì))內(nèi)的維護(hù)方案:
,
,2,3,4.以生產(chǎn)線(xiàn)在技術(shù)改造后一個(gè)維護(hù)周期內(nèi)能連續(xù)正常運(yùn)行的頻率作為概率,求一個(gè)生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費(fèi)的分布列及期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),
分別是橢圓
的左,右焦點(diǎn),
兩點(diǎn)分別是橢圓
的上,下頂點(diǎn),
是等腰直角三角形,延長(zhǎng)
交橢圓
于
點(diǎn),且
的周長(zhǎng)為
.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓
上異于
的動(dòng)點(diǎn),直線(xiàn)
與直
分別相交于
兩點(diǎn),點(diǎn)
,求證:
的外接圓恒過(guò)原點(diǎn)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且
,若
的面積為
,則
的周長(zhǎng)的最小值為( )
A.4B.C.6D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校甲、乙、丙、丁四個(gè)專(zhuān)業(yè)分別有150,150,400,300名學(xué)生.為了解學(xué)生的就業(yè)傾向,用分層抽樣的方法從該校這四個(gè)專(zhuān)業(yè)中抽取60名學(xué)生進(jìn)行調(diào)查,則應(yīng)從丁專(zhuān)業(yè)抽取的學(xué)生人數(shù)為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四個(gè)同樣大小的球,
,
,
兩兩相切,點(diǎn)
是球
上的動(dòng)點(diǎn),則直線(xiàn)
與直線(xiàn)
所成角的正弦值的取值范圍為( ).
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是九江市2019年4月至2020年3月每月最低氣溫與最高氣溫(℃)的折線(xiàn)統(tǒng)計(jì)圖:已知每月最低氣溫與最高氣溫的線(xiàn)性相關(guān)系數(shù)r=0.83,則下列結(jié)論錯(cuò)誤的是( )
A.每月最低氣溫與最高氣溫有較強(qiáng)的線(xiàn)性相關(guān)性,且二者為線(xiàn)性正相關(guān)
B.月溫差(月最高氣溫﹣月最低氣溫)的最大值出現(xiàn)在10月
C.9﹣12月的月溫差相對(duì)于5﹣8月,波動(dòng)性更大
D.每月最高氣溫與最低氣溫的平均值在前6個(gè)月逐月增加
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com