日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定義在區(qū)間[0,3]上的函數(shù)f(x)=kx2-2kx的最大值為3,那么實數(shù)k的取值范圍為    
          【答案】分析:先用配方法將函數(shù)變形,求出其對稱軸,再根據(jù)開口方向,確定函數(shù)的單調(diào)性,明確取最大值的狀態(tài),再計算.
          解答:解析:∵f(x)=k(x-1)2-k,
          (1)當k>0時,二次函數(shù)圖象開口向上,
          當x=3時,f(x)有最大值,f(3)=k•32-2k×3=3k=3
          ∴k=1;
          (2)當k<0時,二次函數(shù)圖象開口向下,
          當x=1時,f(x)有最大值,f(1)=k-2k=-k=3
          ∴k=-3.
          (3)當k=0時,顯然不成立.
          故k的取值集合為:{1,-3}.
          故答案為:{1,-3}
          點評:本題主要考查函數(shù)最值的求法,基本思路是:二次項系數(shù)位置有參數(shù)時,先分類討論,再確定對稱軸和開口方向,明確單調(diào)性,再研究函數(shù)最值.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知定義在區(qū)間[0,2]上的函數(shù)y=f(x)的圖象如圖所示,則y=f(2-x)的圖象為( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知定義在區(qū)間[0,2]上的兩個函數(shù)f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=
          2x3

          (1)求函數(shù)y=f(x)的最小值m(a)及g(x)的值域;
          (2)若對任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•順義區(qū)二模)已知定義在區(qū)間[0,
          2
          ]上的函數(shù)y=f(x)的圖象關于直線x=
          4
          對稱,當x
          4
          時,f(x)=cosx,如果關于x的方程f(x)=a有解,記所有解的和為S,則S不可能為( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          填空題
          (1)已知
          cos2x
          sin(x+
          π
          4
          )
          =
          4
          3
          ,則sin2x的值為
          1
          9
          1
          9

          (2)已知定義在區(qū)間[0,
          2
          ]
          上的函數(shù)y=f(x)的圖象關于直線x=
          4
          對稱,當x≥
          4
          時,f(x)=cosx,如果關于x的方程f(x)=a有四個不同的解,則實數(shù)a的取值范圍為
          (-1,-
          2
          2
          )
          (-1,-
          2
          2
          )


          (3)設向量
          a
          ,
          b
          ,
          c
          滿足
          a
          +
          b
          +
          c
          =
          0
          ,(
          a
          -
          b
          )⊥
          c
          ,
          a
          b
          ,若|
          a
          |=1
          ,則|
          a
          |2+|
          b
          |2+|
          c
          |2
          的值是
          4
          4

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知定義在區(qū)間[0,2]上的兩個函數(shù)f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=
          2xx+1

          (1)求函數(shù)y=f(x)的最小值m(a)及g(x)的值域;
          (2)若對任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范圍.

          查看答案和解析>>

          同步練習冊答案