日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在多面體中,平面平面,四邊形是邊長為的正方形,是等腰直角三角形,且,平面

          1)求異面直線所成角的余弦值;

          2)求二面角的余弦值.

          【答案】1;(2.

          【解析】

          1)利用面面垂直的性質(zhì)定理證明出平面,然后以為坐標(biāo)原點(diǎn),為一組基底建立空間直角坐標(biāo)系,利用空間向量法可求出異面直線所成角的余弦值;

          2)求出平面的法向量,然后利用空間向量法可求出二面角的余弦值.

          1,即,

          因?yàn)槠矫?/span>平面,平面平面,平面,

          平面

          由于四邊形為邊長為的正方形, 所以、、兩兩互相垂直.

          為坐標(biāo)原點(diǎn),為一組基底建立如圖所示的空間直角坐標(biāo)系.

          平面,

          、、、、,

          ,,則,

          所以所成角的余弦值為;

          2,,設(shè)平面的一個法向量為,

          ,取,得,

          平面的一個法向量為,

          由二面角的平面角為銳角,所以二面角的余弦值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

          在平面直角坐標(biāo)系,已知曲線為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為。

          (1)求曲線的普通方程和直線的直角坐標(biāo)方程;

          (2)過點(diǎn)且與直線平行的直線, 兩點(diǎn),求點(diǎn), 的距離之積。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2010年至2018年之間,受益于基礎(chǔ)設(shè)施建設(shè)對光纖產(chǎn)品的需求,以及個人計(jì)算機(jī)及智能手機(jī)的下一代規(guī)格升級,電動汽車及物聯(lián)網(wǎng)等新機(jī)遇,全球連接器行業(yè)增長呈現(xiàn)加速狀態(tài).根據(jù)如下折線圖,下列結(jié)論正確的個數(shù)為(

          ①每年市場規(guī)模逐年增加;

          ②市場規(guī)模增長最快的是2013年至2014年;

          ③這8年的市場規(guī)模增長率約為40%;

          2014年至2018年每年的市場規(guī)模相對于2010年至2014年每年的市場規(guī)模,數(shù)據(jù)方差更小,變化比較平穩(wěn).

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          (1)當(dāng)時,

          ①若曲線與直線相切,求c的值;

          ②若曲線與直線有公共點(diǎn),求c的取值范圍.

          (2)當(dāng)時,不等式對于任意正實(shí)數(shù)x恒成立,當(dāng)c取得最大值時,求a,b的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān)……”其大意為:“某人從距離關(guān)口三百七十八里處出發(fā),第一天走得輕快有力,從第二天起,由于腳痛,每天走的路程為前一天的一半,共走了六天到達(dá)關(guān)口……” 那么該人第一天走的路程為______________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)求曲線處的切線方程;

          2)對任意恒成立,求實(shí)數(shù)的取值范圍;

          3)當(dāng)時,試求方程的根的個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知三棱錐PABC的平面展開圖中,四邊形ABCD為邊長等于的正方形,△ABE和△BCF均為正三角形,在三棱錐PABC中:

          1)證明:平面PAC⊥平面ABC

          2)若點(diǎn)M為棱PA上一點(diǎn)且,求二面角PBCM的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)求證:函數(shù)有唯一零點(diǎn);

          (2)若對任意,恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了貫徹落實(shí)黨中央對新冠肺炎疫情防控工作的部署和要求,堅(jiān)決防范疫情向校園蔓延,切實(shí)保障廣大師生身體健康和生命的安全,教育主管部門決定通過電視頻道、網(wǎng)絡(luò)平臺等多種方式實(shí)施線上教育教學(xué)工作.某教育機(jī)構(gòu)為了了解人們對其數(shù)學(xué)網(wǎng)課授課方式的滿意度,從經(jīng)濟(jì)不發(fā)達(dá)的A城市和經(jīng)濟(jì)發(fā)達(dá)的B城市分別隨機(jī)調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如下:

          若評分不低于80分,則認(rèn)為該用戶對此教育機(jī)構(gòu)授課方式認(rèn)可,否則認(rèn)為該用戶對此教育機(jī)構(gòu)授課方式不認(rèn)可”.

          1)請根據(jù)此樣本完成下列2×2列聯(lián)表,并據(jù)此列聯(lián)表分析,能否有95%的把握認(rèn)為城市經(jīng)濟(jì)狀況與該市的用戶認(rèn)可該教育機(jī)構(gòu)授課方式有關(guān)?

          認(rèn)可

          不認(rèn)可

          合計(jì)

          A城市

          B城市

          合計(jì)

          2)以該樣本中A,B城市的用戶對此教育機(jī)構(gòu)授課方式認(rèn)可的頻率分別作為A,B城市用戶對此教育機(jī)構(gòu)授課方式認(rèn)可的概率.現(xiàn)從A城市和B城市的所有用戶中分別隨機(jī)抽取2個用戶,用X表示這4個用戶中對此教育機(jī)構(gòu)授課方式認(rèn)可的用戶個數(shù),求X的分布列.

          參考公式:,其中.

          參考數(shù)據(jù):

          0.10

          0.05

          0.025

          2.706

          3.841

          5.024

          查看答案和解析>>

          同步練習(xí)冊答案