日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)二項(xiàng)展開(kāi)式Cn=(+1)2n-1(n∈N*)的整數(shù)部分為An,小數(shù)部分為Bn
          (1)計(jì)算C1B1,C2B2的值;
          (2)求CnBn
          【答案】分析:(1)將n分別用1,2 代替求出C1,C2,利用多項(xiàng)式的乘法展開(kāi),求出C1,C2的小數(shù)部分B1,B2,求出C1B1,C2B2的值.
          (2)利用二項(xiàng)式定理表示出Cn,再利用二項(xiàng)式定理表示出,兩個(gè)式子相減得到展開(kāi)式的整數(shù)部分和小數(shù)部分,求出CnBn的值.
          解答:解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225934374646777/SYS201311012259343746467015_DA/1.png">,
          所以,A1=2,,所以C1B1=2;
          ,其整數(shù)部分A2=20,小數(shù)部分,
          所以C2B2=8.
          (2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225934374646777/SYS201311012259343746467015_DA/6.png">

          ①-②得:
          =2(
          ,所以
          所以
          點(diǎn)評(píng):解決二項(xiàng)式的有關(guān)問(wèn)題一般利用二項(xiàng)式定理;解決二項(xiàng)展開(kāi)式的通項(xiàng)問(wèn)題常利用的工具是二項(xiàng)展開(kāi)式的通項(xiàng)公式.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)二項(xiàng)展開(kāi)式Cn=(
          3
          +1)2n-1(n∈N*)的整數(shù)部分為An,小數(shù)部分為Bn
          (1)計(jì)算C1B1,C2B2的值;
          (2)求CnBn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)二項(xiàng)展開(kāi)式Cn=(
          3
          +1)2n-1
          (n∈N*)的小數(shù)部分為Bn
          (1)計(jì)算C1B1,C2B2的值;
          (2)求證:CnBn=22n-1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          設(shè)二項(xiàng)展開(kāi)式Cn=(
          3
          +1)2n-1(n∈N*)的整數(shù)部分為An,小數(shù)部分為Bn
          (1)計(jì)算C1B1,C2B2的值;
          (2)求CnBn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省揚(yáng)州中學(xué)高三(上)12月質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

          設(shè)二項(xiàng)展開(kāi)式Cn=(+1)2n-1(n∈N*)的整數(shù)部分為An,小數(shù)部分為Bn
          (1)計(jì)算C1B1,C2B2的值;
          (2)求CnBn

          查看答案和解析>>

          同步練習(xí)冊(cè)答案